A Thin Hard Rain from Space

Slides:



Advertisements
Similar presentations
7: Atomic and Nuclear Physics
Advertisements

Unit 2 Notes – Radioactivity
Unit 2 Notes – Radioactivity
Chapter 11 Radioactive Elements.
Chapter 5: Radioactivity
ASTR112 The Galaxy Lecture 11 Prof. John Hearnshaw 13. The interstellar medium: dust 13.5 Interstellar polarization 14. Galactic cosmic rays 15. The galactic.
Detecting Particles: The Spark Chamber Particle Physics Masterclass Stephen A. Bull Tuesday 24 th April 2007.
PHYS 206 Matter and Light At least 95% of the celestial information we receive is in the form of light. Therefore we need to know what light is and where.
Nuclear Instability.
Cosmic rays in solar system By: Tiva Sharifi. Cosmic ray The earth atmosphere is bombarded with the energetic particles originating from the outer space.
The Pierre Auger Observatory Nicolás G. Busca Fermilab-University of Chicago FNAL User’s Meeting, May 2006.
Cosmic Rays Basic particle discovery. Cosmic Rays at Earth – Primaries (protons, nuclei) – Secondaries (pions) – Decay products (muons, photons, electrons)
9/16/03Prof. Lynn Cominsky1 Class web site: Office: Darwin 329A and NASA E/PO (707) Best way to reach.
Multi-Messenger Astronomy AY 17 10/19/2011. Outline What is Multi-messenger astronomy? Photons Cosmic Rays Neutrinos Gravity-Waves Sample-Return.
Large Magellanic Cloud, 1987 (51.4 kparsec) SN 1987a after before 2006 Hubble.
Gravitational waves LIGO (Laser Interferometer Gravitational-Wave Observatory ) in Louisiana. A laser beam is.
Gamma-Ray Astronomy Dana Boltuch Ph. D
The Highest Energy Cosmic Rays Two Large Air Shower Detectors
Chapter 5 Basic properties of light and matter. What can we learn by observing light from distant objects? How do we collect light from distant objects?
Cosmic Rays Discovery of cosmic rays Local measurements Gamma-ray sky (and radio sky) Origin of cosmic rays.
 Celestial Sphere  Imagine a sphere that surrounds our planet in which all the stars are attached. This sphere is allowed to rotate freely around the.
Radioactivity. History Discovered (accidentally) ByHenri Becquerel “He carries thus his uranium salts under the sun, places them close to photographic.
Cosmic Rays Liz Puchnarewicz Mullard Space Science Laboratory University College London
Nebular Astrophysics.
NEEP 541 Radiation Interactions Fall 2003 Jake Blanchard.
Sayfa 1 EP228 Particle Physics Department of Engineering Physics University of Gaziantep Dec 2014 Topic 5 Cosmic Connection Course web page
Properties of Light.
The Sun Internal structure of the Sun Nuclear fusion –Protons, neutrons, electrons, neutrinos –Fusion reactions –Lifetime of the Sun Transport of energy.
COSMIC RAYS An Overview Dr. Darrel Smith Department of Physics Embry-Riddle Aeronautical University Prescott, AZ
CHEMISTRY 1 CHEMISTRY 1 Nuclear Chemistry Chapter 28.
Unit IV: Nuclear Physics. What is Radioactivity?  Is the spontaneous breakdown of an unstable nucleus.  Results in the emission of particles or electromagnetic.
PHYS:1200 FINAL EXAM 1 FINAL EXAM: Wednesday December 17, 12:30 P - 2:30 P in LR-1 VAN FE covers Lectures 23 – 36 The study guide, formulas, and practice.
At the start of the 20th century scientists became very interested in a puzzling phenomena. There seemed to be rather more radiation in the environment.
Cosmic Rays The discovery of cosmic rays Discoveries made with cosmic rays Cosmic rays in modern physics education Let’s count cosmic rays around us.
Detection of cosmic rays in the SKALTA experiment Marek Bombara (P. J. Šafárik University Košice), Kysak, August 2011.
High energy Astrophysics Mat Page Mullard Space Science Lab, UCL 12. Cosmic rays.
Cosmic Rays GNEP Teacher Workshop Steve Shropshire, July 2007.
Seeing the Subatomic Stephen Miller Saturday Morning Physics October 11, 2003.
Chapter 25 Nuclear Chemistry 25.1 Nuclear Radiation
Application of neutrino spectrometry
Nuclear Physics. The famous Geiger-Marsden Alpha scattering experiment (under Rutherford’s guidance) In 1909, Geiger and Marsden were studying how alpha.
Cosmic Rays Discovery and its nature. .1 Discovery As long ago as 1900, C. T. R. Wilson and others found that the charge on an electroscope always 'leaked'
Cosmic Rays Discovery and its nature. .1 Discovery As long ago as 1900, C. T. R. Wilson and others found that the charge on an electroscope always 'leaked'
Warm up The sun is 4.6 billion years old – how can it continue to produce so much heat and light?
Cosmic rays at sea level. There is in nearby interstellar space a flux of particles—mostly protons and atomic nuclei— travelling at almost the speed of.
Cosmic rays ASTR 3010 Lecture 23. History of Cosmic Rays: Charles Coulomb 1785 Charles Coulomb o Discovered that charged body in the air.
Cosmic Rays Cosmic Rays at Sea-Level - Extensive Air Showers and the detection of cosmic rays.
Galactic Cosmic Rays (GCRS) Galactic cosmic rays (GCRs) come from outside the solar system but generally from within our Milky Way galaxy. GCRs are atomic.
Cosmic Rays2 The Origin of Cosmic Rays and Geomagnetic Effects.
Chapter 29:Nuclear Physics
II. DETECTORS AND HOW THEY WORK
Page 1 12/25/2015 SCE 4350: Nuclear Science Nuclear Science Major Points of the Lesson: The Nucleus –Nucleons (A) = Protons (Z) + Neutrons (N) –Number.
Particles & Waves The Standard Model. Orders of Magnitude Human Scale Distance10 -3 ~ 10 2 m Measurable without additional technology Time10 0 ~ 10 2.
CHEMISTRY 1 CHEMISTRY 1 Nuclear Chemistry Chapter 28.
Where do ultra-high energy cosmic rays come from? No one knows the origin of ultra-high energy cosmic rays. The majority of low-energy cosmic ray particles.
Cosmic Rays High Energy Astrophysics
The atom orbiting electrons Nucleus (protons and neutrons)
Radioactivity and Nuclear Decay Test on Friday March 1.
Extreme Astrophysics the the > 10 GeV photon energy < cm wavelength > 10 8 TeV particles exist > 10 8 TeV particles exist they should.
A black hole: The ultimate space-time warp Ch. 5.4 A black hole is an accumulation of mass so dense that nothing can escape its gravitational force, not.
KS4 Radioactivity. AlphaBetaGamma Penetrating power Range of radiation leastmediummost shortestmediumlongest.
COSMIC RAYS. At the Earth’ Surface We see cascades from CR primaries interacting with the atmosphere. Need to correct for that to understand their astronomical.
PHYSICS – Radioactivity
To View Slide Show Click on “Slide Show” above –Click on “From Current Slide”
Discovery of the nucleus Rutherford carried out experiments to see what happened when alpha particles (2 neutrons and 2 protons) were fired at metal foil.
Discovery of Cosmic Rays
Pierre Auger Observatory Present and Future
Detecting Particles: The Spark Chamber
Subatomic Particles and Quantum Theory
Presentation transcript:

A Thin Hard Rain from Space Cosmic Rays – A Thin Hard Rain from Space Roger Moses

A Thin Hard Rain from Space Cosmic Rays – A Thin Hard Rain from Space “Coming out of space and incident on the high atmosphere, there is a thin rain of high energy particles known as the primary cosmic radiation”

A Thin Hard Rain from Space Cosmic Rays – A Thin Hard Rain from Space “Coming out of space and incident on the high atmosphere, there is a thin rain of high energy particles known as the primary cosmic radiation” Nobel Physics Prize Lecture 1950 Cecil Powell, University of Bristol

What are Cosmic Rays? Natural Ionising Radiation Background Radioactive decay - discovered in 1896 by Becquerel Natural ionising radiation similar to recently discovered X-rays Alpha  Emission of He nucleus Beta  Emission of high energy electron Gamma  Emission of high energy photon Spontaneous fission Split into two parts

Victor Hess August 7, 1912, Austria 2½ hr flight to 16,000ft 3 gold-leaf electroscopes

Cloud chamber track of the positron, discovered by Carl Anderson. Use of a strong magnetic field caused charged particles to follow curved paths. The positron entered the chamber at the lower left and travelled up, through the lead plate across the middle of the chamber. The positive charge is inferred from the direction of curvature. This discovery of the first anti-particle, predicted by Paul Dirac, was the beginning of particle physics. (From Phys.Rev 43 [1933]: 491; courtesy of the Archives, California Institute of Technology.)

Cosmic Ray Summary 1935 Charged particles (leave tracks of ionisation) of very high energy, moving close to speed of light c. Used as tool to do “high energy particle physics” Deflected by magnetic fields Produce “showers” of secondaries in atmosphere, which reach the ground The next 30 years fill out this picture

Charged particles (leave tracks of ionisation) of very high energy Can use the ionisation to detect tracks in a variety of detector systems Luminescent screen (scintillator) Cloud chamber Photographic plate Electronic detector (ionisation chamber, spark gap)

Can use the ionisation to detect tracks in a variety of detector systems Photographic plate

Charged particles (leave tracks of ionisation) of very high energy Can measure the energy by measuring energy lost in ionisation until it stops, or interpose matter e.g. lead, or by curvature in magnetic field

Used as tool to do “high energy particle physics” Discovery of -meson (pion) and its decay to a muon Bristol 1947

3.108Br = E/Z Deflected by magnetic fields Magnetic Rigidity - For a particle with electric charge Z, energy E eV (electron volts) in a magnetic field strength B tesla, the radius of its circular track will be r metres 3.108Br = E/Z

3.108Br = E/Z r = E/3.108BZ Z = +1, B = 2.4 tesla E = 63 MeV = 6.3.107eV r = 0.0875 m E = 23 MeV = 2.9.107eV r = 0.040 m All highly relativistic, v/c =  1,  = (1 - 2)-1/2 E = m0c2 Positron, electron m0 = 0.512 MeV

Produce “showers” of secondaries in atmosphere, which reach the ground. The peak ionisation is reached a height between the original collision of the primary with a nucleus in the atmosphere, and the ground. This generates the Pfotzer maximum at 18km.

Produce “showers” of secondaries in atmosphere, which reach the ground. The peak ionisation is reached a height between the original collision of the primary with a nucleus in the atmosphere, and the ground. This generates the Pfotzer maximum at 18km.

Charged particles (leave tracks of ionisation) of very high energy, moving close to speed of light c. Used as tool to do “high energy particle physics” Deflected by magnetic fields Produce “showers” of secondaries in atmosphere, which reach the ground The next 30 years fill out this picture The basic knowledge and tools outlined above has enabled us to investigate the cosmic radiation in great depth

Galactic Cosmic Radiation Solar Flare Particles Trapped Radiation   Galactic Cosmic radiation - Energetic particles incident on the top of the atmosphere at a rate of ~ 1 particle/cm2s-1 87% Protons ( H nuclei ) 12% Alpha particles ( He nuclei ) 1% The Rest 

Galactic Cosmic Radiation Solar Flare Particles Trapped Radiation   Solar particles (largely protons) with energies > 100 MeV are produced by solar flares in periods of solar activity. They can exceed G.C.R. by 106 for a short time. Advance warning of solar flare particles is provided by prompt electromagnetic radiation (visible, U.V., X-ray). The X-ray and hard U.V. photons have ionising properties and are themselves a hazard, although easy to shield against. 

Galactic Cosmic Radiation Solar Flare Particles Trapped Radiation The Earth's magnetic field - Acts as a partial barrier to high energy charged particles from outside, Stores solar particle radiation for long periods (years) in the VAN ALLEN trapped radiation belts, which provide a major radiation hazard to both manned and unmanned space vehicles, since the trapped charged particles, both electrons and protons may attain space densities in excess of 106 times those in low orbits.  

Galactic Cosmic Radiation Solar Flare Particles Trapped Radiation The Earth's magnetic field - 3.108Br = E/Z r = E/3.108 BZ Z = +1, B = 10-4 tesla E = 10 MeV = 107eV r = 333 m Electrons and protons are trapped on the magnetic field lines of the Earth

Galactic Cosmic Radiation Solar Flare Particles Trapped Radiation The Earth's magnetic field - Electrons and protons are trapped on the magnetic field lines of the Earth They leak into the atmosphere at high geomagnetic latitudes

Electrons and protons are trapped on the magnetic field lines of the Earth, and leak into the atmosphere at high geomagnetic latitudes

I will concentrate on the Galactic Cosmic Radiation –  Galactic Cosmic radiation - Energetic particles incident on the top of the atmosphere at a rate of ~ 1 particle/cm2s-1   87% Protons ( H nuclei ) 12% Alpha particles ( He nuclei ) 1% The Rest

Galactic Cosmic radiation - Energetic particles incident on the top of the atmosphere at a rate of ~ 1 particle/cm2s-1  Composition 87% Protons 12% Alpha particles 1% The Rest  

Galactic Cosmic radiation  Composition 87% Protons 12% Alpha particles 1% The Rest ALL the lithium, beryllium and boron on earth was produced in collisions between cosmic ray primaries moving at the speed of light and nuclei in the interstellar medium!

Galactic Cosmic radiation - Energetic particles incident on the top of the atmosphere at a rate of ~ 1 particle/cm2s-1 Energy Spectrum  

Galactic Cosmic radiation - Energetic particles incident on the top of the atmosphere at a rate of ~ 1 particle/cm2s-1 Energy Spectrum For proton with 1020 ev = 1011 Cf protons in Large Hadron Collider = 7.103   LHC

Galactic Cosmic radiation For proton with 1020 ev = 1011 Protons with these energies experience the passage of time slower by the above factor; they cross the visible universe in about a month! They have sufficient energy to boil a small cup of water!  LHC

A Thin Hard Rain from Space Thin - rare cf. photons Galactic Cosmic radiation - Energetic particles incident on the top of the atmosphere at a rate of ~ 1 particle/cm2s-1   A Thin Hard Rain from Space   Thin - rare cf. photons Hard – 1020 ev is enough energy in one particle to boil a cup of water Rain – Random, sounds like rain, magnetic fields have completely scrambled directional information and age We have established what Cosmic Rays are, so Where do they come from?, and How do they get their energy?

Where do they come from?, and How do they get their energy? Firstly, do they matter, are they an important bit of astrophysics, or just an interesting minor topic? The power input from CR is 1.83.10-5 Wm-2 Cf Sunlight 1.38.103 Wm-2 Cosmic rays don’t keep us warm! Energy density = power/particle speed = 6.1.10-14 Jm-2 = 3.81.105 eVm-3

Energy density = power/particle speed = 6.1.10-14 Jm-2 = 3.81.105 eVm-3 But we are not in a typical place In a typical place, well away from any star, the cosmic ray energy density doesn’t change, but starlight goes down by the inverse Ɋ law, to 1.8.103 eVm-3, much less than CR We can do the same sums for other components of the energy present

Energy densities in Interstellar Space Cosmic Rays 3.8.105 eVm-3 Sunlight 1.8.103 eVm-3 Starlight = Sunlight x 100 1.8.105 eVm-3 Thermal Energy of Gas 1.3.105 eVm-3 Magnetic Field 2.5.106 eVm-3 All these are broadly comparable, is there some principle of equipartition at work. The main problem of the Cosmic Rays is sheer Energy Supply!

We can see cosmic ray type phenomena a long way away Messier M1 Quasar 3C273 Crab Nebula Supernova Remnant

We can see cosmic ray type phenomena a long way away Messier M1 Crab Nebula Supernova Remnant The galactic supernovae can supply the heavy element enriched material we see, and accelerate it in the magnetospheres of the central pulsars, rotating neutron stars, to cosmic ray energies (but not the highest). There is still no direct link between this likely source and what we observe at Earth

We can see cosmic ray type phenomena a long way away Quasar 3C273 Energetic galactic nuclei are supplying relativistic electrons with cosmic ray energies (but again not the highest detected) in these jets. We see them by the synchrotron radiation they produce in the galactic magnetic fields Again there is still no direct link between this likely source and what we observe at Earth

How do the very highest energy cosmic ray particles get their energy? We don’t know in detail, but an old idea of Enrico Fermi gives us a conceptual route to a solution, but the detailed mechanisms are not clear Individual particles collide with the magnetic fields of interstellar gas clouds, and eventually will attain the KE of an average gas cloud by equipartition. This is sufficient to explain the very highest energies, though there are competing loss processes.

Galactic Cosmic radiation - Energetic particles incident on the top of the atmosphere at a rate of ~ 1 particle/cm2s-1  87% Protons 12% Alpha particles 1% The Rest   Surprisingly, the experiments we worked on looking at “the rest” 25-40 years ago are as good as it gets. It is instructive to ask why.

Can use the ionisation to detect tracks in a variety of detector systems Photographic plate

Partial stack of photographic emulsion/dielectric detector

Stack of photographic emulsion/dielectric detector on its way to 140,000ft. Cost approx. £100,000 (1970) “It is as easy to count atomies as resolve the propositions of a lover” Celia, As You Like It

The only way to improve on this is to put experiments on satellites

The only way to improve on this is to put experiments on satellites Ariel 6 1979

The only way to improve on this is to put experiments on satellites Ariel 6 1979

The only way to improve on this is to put experiments on satellites Ariel 6

The only way to improve on this is to put experiments on satellites Ariel 6 ApJ 1987

The only way to improve on this is to put experiments on satellites HEAO-C 1979 USA

So what has been done in this field in the last 20 years?

So what has been done in this field in the last 20 years? Nothing much!

Nothing much! The problem is statistics To do an experiment 10x better than Ariel 6 or HEAO-C We would need 100x exposure in space i.e. 100x area, a detector 10x as big Still economically impossible, as are the other good things we could do along the same lines e.g. Chemical composition vs. energy Anti-matter nuclei

Nothing much! However the same constraints do not apply to ground based observatories, looking at air showers and the very high energy particles that generate them There is one exciting new development current, The Pierre Auger Observatory

Building the Pierre Auger Observatory Paul Mantsch Auger Project Manger

The Design

The Observatory Plan Surface Array 1.5 km spacing 3000 km2 1600 detector stations 1.5 km spacing 3000 km2 Fluorescence Detectors 4 Telescope enclosures 6 Telescopes per enclosure 24 Telescopes total

The Surface Array Detector Station GPS antenna Communications antenna Let me describe some of the details of the self-contained surface detector station. It a water cerenkov detector designed to be simple and robust. The Pampa Amarilla is in the foreground and the Andes are in the background. We spent a lot of time out here in the desert and have grown quite fond of it. Electronics enclosure Solar panels Battery box 3 – nine inch photomultiplier tubes Plastic tank with 12 tons of water

The Fluorescence Detector 11 square meter segmented mirror Here are details of the fluorescence telescopes – the most important feature is the use of Schmidt optics. The schematic shows features of the fluorescence detector. The segmented mirror. 440 pixel camera. That is the use of Schmidt with aperture stop and partial correct ring for reduced spherical aberration. The optical filter that passes the nitrogen fluorescence lines acts as a window to provide a closed and controlled environment. 440 pixel camera Aperture stop and optical filter

Deploying the First Surface Detectors Here we some of the steps in the assembly process. Detector assembly at the campus. Transport to the field Installation of the electronics Final inspection by some of our neighbors. At the left are the deployed tanks stretching across the Pampa – you can see four or perhaps five.

Official First Fluorescence Event 23 May 2001

First Surface Detector 4 – fold event – 12 August 2001

Example Hybrid Event Θ~ 30º, ~ 8 EeV Here is an example of a hybrid event at 8 EeV. On the upper right we see the 7 seven stations hit by the shower with their ADC traces on the left and the lateral distribution below. The geometrical reconstruction of this event used both fluorescence detector and surface array information. The dashed red line is represents where the show/fluorescence detector plane hits the earth. As before the little arrow is where the surface array reconstructs the core position. Note that the SD core position falls exactly on the shower/detector plane – more on this later.

A Tri-ocular Event! ~20EeV

At the very highest energies, particle trajectories are distorted less and less by magnetic fields 3.108Br = E/Z, r = E/3.108BZ Z = +1, B = 10-10 tesla probable galactic field E = 1020eV r = 3.33.1021 m This is now comparable to the distances separating galaxies 1 Mpc = 3.086.1022 m The cosmic rays will come from a direction in the sky related to where the source actually is. Experiments like the Pierre Auger Observatory give us a chance of identifying high energy sources, and the physics going on in them producing and accelerating the particles

How do Cosmic Rays affect us? Mass extinctions Source of random mutation for genetic diversity Magnetic field reversals Carbon dating Astronaut safety Aviation safety Global Warming

How do Cosmic Rays affect us? Mass extinctions Source of random mutation for genetic diversity Magnetic field reversals Carbon dating Global Warming Astronaut safety Aviation safety

How do Cosmic Rays affect us? Mass extinctions

How do Cosmic Rays affect us? Mass extinctions If a supernova (SN) occurred sufficiently close to the solar system (nearer than about 10 parsecs), it could disrupt life on Earth.  Two phenomena resulting from such a nearby SN would severely deplete the Earth's ozone layer allowing more harmful radiation to reach the Earth's surface.  First, there would be an initial burst of gamma-rays from the SN (lasting about three months).  Second, since cosmic rays are thought to be accelerated in the shock wave of a SN (the supernova remnant), there would be an increase in cosmic ray activity on Earth lasting from 1,000 to 10,000 years.  Such an event, could explain a few of the mass extinctions which have occurred through Earth's history. 

How do Cosmic Rays affect us? Mass extinctions Source of random mutation for genetic diversity Magnetic field reversals Carbon dating Global Warming Astronaut safety Aviation safety

How do Cosmic Rays affect us? Source of random mutation for genetic diversity

Source of random mutation for genetic diversity Radiation’s effect on life is not always negative; for evolution to work, it is necessary to have a natural cause for genetic mutation. The cosmic rays are a major component of the background radiation, which is an important cause of mutation.

How do Cosmic Rays affect us? Mass extinctions Source of random mutation for genetic diversity Magnetic field reversals Carbon dating Global Warming Astronaut safety Aviation safety

How do Cosmic Rays affect us? Magnetic field reversals

Magnetic field reversals The Earth’s magnetic dipole switches polarity in an irregular fashion, every few hundred thousand years, as seen in the field reversals in the spreading mid-ocean ridges, as the cooling lava cools below its Curie temperature, and records the magnetic field polarity at that instant. As it goes through zero, life on Earth is exposed to the full radiation intensity of the cosmic rays.

How do Cosmic Rays affect us? Mass extinctions Source of random mutation for genetic diversity Magnetic field reversals Carbon dating Global Warming Astronaut safety Aviation safety

How do Cosmic Rays affect us? Carbon dating

Carbon dating The Carbon 14 produced by CR irradiation of Nitrogen 14 has a half life of 5730 years. Its decay and the consequent change in the 14C/12C isotope ratio enables us to estimate the age of biologically derived carbon compounds at the moment of death, in both organisms and artefacts.

Carbon dating Calibration by growth rings in ancient bristlecone pines indicate the method is generally accurate, but leads to a gradually increasing underestimate; about 6-700 yrs in 6000 years. This probably means that the CR intensity has increased over that period of time.

How do Cosmic Rays affect us? Mass extinctions Source of random mutation for genetic diversity Magnetic field reversals Carbon dating Global Warming Astronaut safety Aviation safety

How do Cosmic Rays affect us? Global Warming

Global Warming A recent hypothesis is that cosmic rays from the sun increase during periods of solar activity, as at present; the extra ionisation produced in the atmosphere increases nucleation centres for water condensation, and hence increases cloud cover, reflecting back the earths heat radiation, producing global warming

Global Warming Whether this happens, or if it produces the opposite effect, is not clear to me. Solar activity increases ionisation high in the atmosphere produced by lower energy solar cosmic rays, but decreases ionisation lower in the atmosphere produced by high energy galactic cosmic rays as these are deflected by increased solar magnetic field. The net effect on cloud cover is unclear, and increased cloud cover can lead to warming or cooling, dependent on where it is produced.

Global Warming It is certainly true that solar activity as manifested by sunspot number has clear climatic effects, but whether this is due to cosmic rays is dubious. Solar terrestrial phenomena are clearly potential climate modifiers, but mechanisms are poorly understood, and this idea seems to not be verifiable at the moment.

How do Cosmic Rays affect us? Mass extinctions Source of random mutation for genetic diversity Magnetic field reversals Carbon dating Global Warming Astronaut safety Aviation safety

How do Cosmic Rays affect us? Astronaut safety

Astronaut safety

Astronaut safety Biological Effects of Radiation - sparse and controversial data for humans, especially at low dose levels.   400 REM, delivered over a short time 50% fatalities in 30d Gross failure of physiological systems 100 REM Can lead to sickness, falling blood cell count, internal bleeding, susceptibility to infection, sometimes death <50 REM No immediate effects Delayed effects - for several 100 REM over a period. Cancer, Cataract, Sterility Reduction in life span (~ 2 days/REM ) Genetic effects - difficult to quantify, but 30-80 REM doubles the spontaneous mutation rate in cell culture.

Astronaut safety SPACE RADIATION EXPOSURE SUMMARY   This makes a 2.5 year minimum mission to Mars look decidedly hazardous SPACE RADIATION EXPOSURE SUMMARY   This makes a 2.5 year minimum mission to Mars look decidedly hazardous

How do Cosmic Rays affect us? Mass extinctions Source of random mutation for genetic diversity Magnetic field reversals Carbon dating Global Warming Astronaut safety Aviation safety

How do Cosmic Rays affect us? Aviation safety

Aviation safety Concorde was/is the only civil airliner with a cosmic-ray detector as standard fit – flies at the Pfotzer maximum

Aviation safety Protection of air crew from cosmic radiation: Guidance material (Version 3.1 - May 2003) 1. Introduction 1.1 The Council of the European Union adopted Directive 96/29 Euratom[1] (the Directive) on 13 May 1996. Article 42 of the Directive imposes requirements relating to the assessment and limitation of air crew members' exposure to cosmic radiation and the provision of information on the effect of cosmic radiation. Member States were required to implement the Directive by 13 May 2000. 1.2 The Air Navigation Order (ANO) has been amended

What are Cosmic Rays? 8/10 Where do they come from? 5/10 How do they get their energy? 4/10 More work needed!

Thank you for your attention