EE359 – Lecture 10 Outline Announcements: MGF approach for average Ps

Slides:



Advertisements
Similar presentations
EE359 – Lecture 8 Outline Capacity of Fading channels Fading Known at TX and RX Optimal Rate and Power Adaptation Channel Inversion with Fixed Rate Capacity.
Advertisements

Wireless Modulation Schemes
EE359 – Lecture 10 Outline Announcements: Project proposals due this Friday at 5pm (post, link) Midterm will be Nov. 7, 6-8pm, Room TBD, no HW due.
EE359 – Lecture 9 Outline Announcements: Project proposals due this Friday at 5pm; create website Midterm date: Thurs Nov. 7, 5:30-7:30 or 6-8pm? Practice.
EE359 – Lecture 10 Outline Announcements: Project proposals due today at 5pm (post, link) Midterm will be Nov. 4, 6-8pm, Room TBD, no HW due that.
Authors: David N.C. Tse, Ofer Zeitouni. Presented By Sai C. Chadalapaka.
Diversity techniques for flat fading channels BER vs. SNR in a flat fading channel Different kinds of diversity techniques Selection diversity performance.
Three Lessons Learned Never discard information prematurely Compression can be separated from channel transmission with no loss of optimality Gaussian.
EE360: Lecture 9 Outline Multiuser OFDM Announcements: Project abstract due next Friday Multiuser OFDM Adaptive Techniques “OFDM with adaptive subcarrier,
EE360: Lecture 7 Outline Adaptive CDMA Techniques Introduction CDMA with power control Adaptive techniques for interference reduction Rate and power adaptation.
Wireless Communication Channels: Small-Scale Fading
Diversity Reception To reduce fading effects, diversity reception techniques are used. Diversity means the provision of two or more uncorrelated (independent)
EE359 – Lecture 12 Outline Announcements Midterm announcements No HW next week (practice MTs) Maximal Ratio Combining MGF Approach to MRC Performance Equal.
Co-Channel Interference
EE359 – Lecture 12 Outline Announcements Midterm announcements No HW next week (practice MTs) Maximal Ratio Combining MGF Approach to MRC Performance Transmit.
EE359 – Lecture 15 Outline Announcements: HW due Friday MIMO Channel Decomposition MIMO Channel Capacity MIMO Beamforming Diversity/Multiplexing Tradeoffs.
1 Lecture 9: Diversity Chapter 7 – Equalization, Diversity, and Coding.
EE359 – Lecture 12 Outline Announcements Midterm announcements No HW next week (practice MTs) Combining Techniques Maximal Ratio Combining MGF Approach.
Digital transmission over a fading channel Narrowband system (introduction) BER vs. SNR in a narrowband system Wideband TDMA (introduction) Wideband DS-CDMA.
EE359 – Lecture 13 Outline Annoucements Midterm announcements No HW this week (study for MT; HW due next week) Midterm review Introduction to adaptive.
مخابرات سیّار (626-40) چند مسیری
Lecture 7,8: Diversity Aliazam Abbasfar. Outline Diversity types Diversity combining.
EE359 – Lecture 15 Outline Introduction to MIMO Communications MIMO Channel Decomposition MIMO Channel Capacity MIMO Beamforming Diversity/Multiplexing.
EE359 – Lecture 14 Outline Announcements: HW posted tomorrow, due next Thursday Will send project feedback this week Practical Issues in Adaptive Modulation.
EE359 – Lecture 13 Outline Adaptive MQAM: optimal power and rate Finite Constellation Sets Practical Constraints Update rate Estimation error Estimation.
Space Time Codes. 2 Attenuation in Wireless Channels Path loss: Signals attenuate due to distance Shadowing loss : absorption of radio waves by scattering.
EE359 – Lecture 12 Outline Combining Techniques
Outline Transmitters (Chapters 3 and 4, Source Coding and Modulation) (week 1 and 2) Receivers (Chapter 5) (week 3 and 4) Received Signal Synchronization.
EE359 – Lecture 12 Outline Announcements Midterm announcements HW 5 due Friday, 11/4, at noon (no late HWs) No HW next week (work on projects) MGF Approach.
EE359 – Lecture 9 Outline Linear Modulation Review
EE359 – Lecture 16 Outline Announcements Proposals due this Friday, 5pm (create website, url) HW 7 posted today, due 12/1 TA evaluations: 10 bonus.
Midterm Review Midterm only covers material from lectures and HWs
EE359 – Lecture 11 Outline Announcements Class project links posted (please check). Will have comments back this week. Midterm announcements No HW next.
EE359 – Lecture 10 Outline Average P s (P b ) MGF approach for average P s Combined average and outage P s P s due to Doppler ISI P s due to ISI.
EE359 – Lecture 18 Outline Announcements last HW posted, due Thurs 12/4 at 5pm (no late HWs) Last regular class lecture, Monday 12/1, 9:30-10:45 (as usual)
EE359 – Lecture 13 Outline Annoucements Midterm announcements No HW this week (study for MT; HW due next week) Introduction to adaptive modulation Variable-rate.
Diversity.
EE359 – Lecture 16 Outline ISI Countermeasures Multicarrier Modulation
EE359 – Lecture 14 Outline Announcements
EE359 – Lecture 15 Outline Announcements: MIMO Channel Capacity
EE359 – Lecture 14 Outline Practical Issues in Adaptive Modulation
Digital transmission over a fading channel
EE359 – Lecture 8 Outline Capacity of Flat-Fading Channels
EE359 – Lecture 11 Outline Doppler and ISI Performance Effects
EE359 – Lecture 3 Outline Announcements Log Normal Shadowing
Space-Time and Space-Frequency Coded Orthogonal Frequency Division Multiplexing Transmitter Diversity Techniques King F. Lee.
EE359 – Lecture 12 Outline Maximal Ratio Combining
EE359 – Lecture 11 Outline Announcements
EE359 – Lecture 13 Outline Announcements
EE359 – Lecture 15 Outline Announcements: MIMO Channel Capacity
Midterm Review Midterm only covers material from lectures and HWs
Diversity Lecture 7.
EE360: Lecture 13 Outline Adaptive Techniques for Cellular
EE359 – Lecture 12 Outline Announcements Transmit Diversity
Wireless Communication Channel Capacity
Wireless Communication Channel Capacity
EE359 – Lecture 13 Outline Announcements
EE359 – Lecture 9 Outline Announcements: Linear Modulation Review
Chen Zhifeng Electrical and Computer Engineering University of Florida
EE359 – Lecture 11 Outline Introduction to Diversity
EE359 – Lecture 9 Outline Linear Modulation Review
EE359 – Lecture 10 Outline Announcements: Average Ps (Pb)
EE359 – Lecture 14 Outline Announcements:
EE359 – Lecture 8 Outline Announcements Capacity of Fading channels
EE359 – Lecture 10 Outline Announcements: Average Ps (Pb)
EE359 – Lecture 18 Outline Announcements Spread Spectrum
EE359 – Lecture 6 Outline Review of Last Lecture
Midterm Review Midterm only covers material from lectures and HWs
EE359 – Lecture 7 Outline Shannon Capacity
EE359 – Lecture 11 Outline Announcements Introduction to Diversity
Presentation transcript:

EE359 – Lecture 10 Outline Announcements: MGF approach for average Ps Project proposals due tomorrow midnight (post, email link) Midterm will be Nov. 9 6-8pm No HW that week, may extend next week’s HW deadline Exam open book/notes, covers thru Chp. 7. Midterm review date/timeTBD. Brief in-class summary as well SCPD students can take exam on campus or remotely More MT announcements next week (practice MTs) MGF approach for average Ps Combined average and outage Ps Doppler and delay spread effect on error probability Introduction to diversity Combining techniques

Review of Last Lecture Fading severely degrades performance Focus on linear modulation Ps approximation in AWGN: Nearest neighbor error dominates Probability of error in fading is random Characterized by outage, average Ps, combination Outage probability Probability Ps is above target; Probability gs below target Fading severely degrades performance Correction to board lecture Ps Ps(target) Outage Ts t or d Used when Tc>>Ts

Review Continued: Average Ps Ts Ps Ps t or d Expected value of random variable Ps Used when Tc~Ts Error probability much higher than in AWGN alone Rarely obtain average error probability in closed form Probability in AWGN is Q-function, double infinite integral

Average Probability of Error Fading severely degrades performance

Alternate Q Function Representation Chap. 6.2 & 6.3.3 Cover in HW, not lecture Traditional Q function representation Infinite integrand, argument in integral limits Average Pe entails infinite integral over Q(z) Craig’s representation: Very useful in fading and diversity analysis Mgs is MGF of fading distribution gs, g depends on modulation

Combined outage and average Ps Ps(gs) Ps(gs) Pstarget Ps(gs) Used in combined shadowing and flat-fading Ps varies slowly, locally determined by flat fading Declare outage when Ps above target value

Delay Spread (ISI) Effects Delay spread exceeding a symbol time causes ISI (self interference). ISI leads to irreducible error floor: Increasing signal power increases ISI power ISI imposes data rate constraint: Ts>>Tm (Rs<<Bc) 1 2 Ts 4 Delay Tm Tm 3 5

Doppler Effects Chap. 6.4 Cover in HW, not lecture High doppler causes channel phase to decorrelate between symbols Leads to an irreducible error floor for differential modulation Increasing power does not reduce error Error floor depends on fDTb as

Introduction to Diversity Basic Idea Send same bits over independent fading paths Independent fading paths obtained by time, space, frequency, or polarization diversity Combine paths to mitigate fading effects Tb t Multiple paths unlikely to fade simultaneously

Combining Techniques Selection Combining Maximal Ratio Combining Fading path with highest gain used Maximal Ratio Combining All paths cophased and summed with optimal weighting to maximize combiner output SNR Equal Gain Combining All paths cophased and summed with equal weighting Array/Diversity gain Array gain is from noise averaging (AWGN and fading) Diversity gain is change in BER slope (fading) Our focus

Main Points Fading greatly increases average Ps or required power for a given target Ps with some outage Alternate Q function approach simplifies Ps calculation, especially its average value in fading Average Ps becomes a Laplace transform. In fast/slow fading, outage due to shadowing, probability of error averaged over fast fading pdf Need to combat flat fading or waste lots of power Adaptive modulation and diversity are main techniques to combat flat fading: adapt to fading or remove it Delay spread causes irreducible error floor at high data rates Doppler causes irreducible error floor at low data rates Diversity overcomes fading effects by combining fading paths Typically entails penalty in rate, bandwidth, complexity, or size.