Machine Architecture and Number Systems

Slides:



Advertisements
Similar presentations
Main Memory Lecture 2 CSCI 1405, CSCI 1301 Introduction to Computer Science Fall 2009.
Advertisements

Computer Hardware.
System Environment Part 1 The Register Level. Module Content “Systems environment” is a term used to describe the hardware and software structures which.
CMSC 104, Version 9/01 1 Machine Architecture and Number Systems Topics Major Computer Components Bits, Bytes, and Words The Decimal Number System The.
BLOCK DIAGRAM OF COMPUTER
Aug CMSC 104, LECT-021 Machine Architecture and Number Systems Some material in this presentation is borrowed form Adrian Ilie From The UNIVERSITY.
Lesson 3 — How a Computer Processes Data
Ch Review1 Review Chapter Microcomputer Systems Hardware, Software, and the Operating System.
1 Machine Architecture and Number Systems Topics Major Computer Components Bits, Bytes, and Words The Decimal Number System The Binary Number System Converting.
Lesson 2 — How Does A Computer Process Data?
Computer Hardware Introduction. Computer Hardware Introduction The basic form of a computer is this: PROCESSING MEMORY INPUTOUTPUT But let’s look inside.
Computers Are Your Future Eleventh Edition Chapter 2: Inside the System Unit Copyright © 2011 Pearson Education, Inc. Publishing as Prentice Hall1.
Machine Architecture CMSC 104, Section 4 Richard Chang 1.
CMSC104 Lecture 2 Remember to report to the lab on Wednesday.
Components of a Computer Prepared by: Mrs. McCallum-Rodney.
CMSC 104, Lecture 051 Binary / Hex Binary and Hex The number systems of Computer Science.
Lesson 3 — How a Computer Processes Data Unit 1 — Computer Basics.
Aug CMSC 104, LECT-021 Machine Architecture Some material in this presentation is borrowed form Adrian Ilie From The UNIVERSITY of NORTH CAROLINA.
Development of Computers. Hardware 1. Original concept: Charles Babbage 1840’s 2. 4 basic components of a computer system: input store mill output (Now:
Nama: Chuli jimmi Manurung
Computer Basics Common Components
Computer Hardware A computer is made of internal components Central Processor Unit Internal External and external components.
Machine Architecture and Number Systems
Machine Architecture CMSC 104, Section 4 Richard Chang 1.
CMSC Machine Architecture and Number Systems Topics Major Computer Components Bits, Bytes, and Words The Decimal Number System The Binary Number.
Computer Systems. Bits Computers represent information as patterns of bits A bit (binary digit) is either 0 or 1 –binary  “two states” true and false,
Binary Decimal Hexadecimal
CMSC 1041 Machine Architecture An Introduction to Computer Components.
Number Systems. Topics  The Decimal Number System  The Binary Number System  Converting from Binary to Decimal  Converting from Decimal to Binary.
CMSC 104, LECT02 1 Machine Architecture An Introduction to Computer Components.
CMSC 1041 Binary / Hex Binary and Hex The number systems of Computer Science.
CHAPTER 1 COMPUTER SCIENCE II. HISTORY OF COMPUTERS (1.1) Eniac- one of the worlds first computers Used more electricity than an entire city block of.
IC 3 BASICS, Internet and Computing Core Certification Computing Fundamentals Lesson 2 How Does a Computer Process Data?
Copyright © 2006 by The McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill Technology Education Chapter 1 Looking Inside the Computer System.
Introduction to Programming. Key terms  CPU  I/O Devices  Main memory  Secondary memory  Operating system  User interface  Application  GUI 
The Personal Computer. Input devices & accessories.
Five Components of a Computer Input Device – keyboard, scanner, PDA/stylus, digital camera, mouse, MP3 player, fax machine, microphone Storage Device –
Part 3 Ms. T. N. Jones1. Vocabulary 1. A design for health, safety, and comfort 2. A tool used to put data into a computer, such as a keyboard, mouse,
UMBC CMSC 104 – Section 01, Fall UMBC CMSC 104, Section 01 - Fall 2016  Nothing. Enjoy your weekend! 2.
Computer Graphics HARDWARE. Computers  Computers are automatic, electronic machines that –accept data & instructions from a user (INPUT) –store the data.
A+ Guide to Managing and Maintaining Your PC, 7e Chapter 1 Introducing Hardware.
Chapter 2 content Basic organization of computer What is motherboard
Basic Computer Fundamentals
Computer Architecture and Number Systems
Introducing Computer Systems
Computer Science II Chapter 1.
Chapter 1: An Overview of Computers and Programming Languages
A+ Guide to Managing and Maintaining Your PC, 7e
Principles of Information Technology
Chapter 7.2 Computer Architecture
Introduction to Computer Architecture
Parts of a Computer I plan to use this presentation for an introduction at the start of the year. Maybe even create a “word wall” with the cards.
Microcomputer Architecture
Machine Architecture and Number Systems
The Computer Work Stations
Introduction to Computing Lecture # 1
Computer Based Technology:
Machine Architecture and Number Systems
Standard Grade Revision
Machine Architecture and Number Systems
Machine Architecture and Number Systems
Machine Architecture and Number Systems
Overview 1. Inside a PC 2. The Motherboard 3. RAM the 'brains' 4. ROM
Chapter Four Data Representation in Computers By Bezawit E.
Police Technology Chapter Two
COMPUTER FUNDAMENTALS i
Computer Tech. Hardware, Storage, Misc..
Notes from Last Class Office Hours: GL Accounts?
Computer components is a programmable machine that receives input, stores and manipulates data, and provides output in a useful format. Computer The computer.
Machine Architecture and Number Systems
Presentation transcript:

Machine Architecture and Number Systems Topics Major Computer Components Bits, Bytes, and Words The Decimal Number System The Binary Number System Converting from Binary to Decimal Converting from Decimal to Binary The Hexidecimal Number System Reading -

Major Computer Components Central Processing Unit (CPU) Bus Main Memory (RAM) Secondary Storage Media I / O Devices

The CPU Central Processing Unit The “brain” of the computer Controls all other computer functions In PCs (personal computers) also called the microprocessor or simply processor.

The Bus Computer components (Such as: the CPU, Main Memory, & Hard Disks) are connected by a bus. A bus is a group of parallel wires that carry control signals and data between components.

Main Memory Main memory holds information such as computer programs, numeric data, or a document created by a word processor. Main memory is made up of capacitors. If the capacitor is charged, then its state is said to be 1 or ON. We could also say the bit is set. If the capacitor does not have a charge, then its state is 0 or OFF. We could also say that the bit is reset or cleared. 0,1

Main Memory (con’t) Memory is divided into cells, where each cell contains 8 bits (1’s or 0’s). Eight bits is called a byte. Each of these cells is numbered. The number associated with a cell is known as its address. Main memory is volatile storage. That is, if power is lost, the information in main memory is lost.

Main Memory (con’t) In addition to the circuitry that holds the bits, there are other circuits that allow other components (Like the CPU) to: get the information held at a particular address in memory, known as a READ, or store information at a particular address in memory, known as a WRITE.

Main Memory (con’t) All addresses in memory can be accessed in the same amount of time. We do not have to start at address 0 and read everything until we get to the address we really want. We can go directly to the address we want and access the data. That is why we call main memory RAM (Random Access Memory).

Secondary Storage Media Disks -- floppy, hard, removable (random access) Tapes (sequential access) CDs (random access) DVDs (random access) Secondary storage media store files that contain computer programs data files other types of information This type of storage is called persistent (permanent) storage because it is non-volatile.

I/O (Input/Output) Devices Information input/output is handled by I/O (peripheral) devices. A peripheral device is a component that is not an integral part of the computer. Examples: monitor keyboard mouse disk drive (floppy, hard, removable) CD or DVD drive printer scanner

Computer/Peripheral Communication Ports locations through which data can enter or leave the computer (plugs on back) identified by port numbers like memory cells are identified by addresses

Parallel and Serial Communication Refer to the manner in which bit patterns are transferred with respect to time. Parallel - All the bits of a pattern are transferred at the same time, with each bit being transferred on a separate line. Requires multi-wire cables. Serial - Transmits one bit at a time. Slower, but uses a simpler data path.

Bits, Bytes, and Words A bit is a single binary digit (a 1 or 0). A byte is 8 bits A word is 32 bits or 4 bytes (machine dependant) Long word = 8 bytes = 64 bits Quad word = 16 bytes = 128 bits Programming languages use these standard number of bits when organizing data storage and access. What do you call 4 bits ?? (hint: it is a small byte)

Items covered in the this part of class: From “C How to Program” 4rd edition Deitel & Deitel , ISBN# = 0-13-142644-3 Items covered in the this part of class: Page 1206 - Number Systems: binary, decimal, hex Page 1209 - Number System Representations Page 1210 - Converting Binary to Decimal - Converting Decimal to Binary/Hex

The Binary Number System The on and off states of the capacitors in RAM can be thought of as the values 1 and 0. Therefore, thinking about how information is stored in RAM requires knowledge of the binary (base 2) number system. Let’s review the decimal (base 10) number system first.

The Decimal Number System The decimal number system is a positional number system. Example: 5 6 2 1 1 X 100 1000 100 10 1 2 X 101 6 X 102 5 X 103

The Decimal Number System (con’t) The decimal number system is also known as base 10. The values of the positions are calculated by taking 10 to some power. Why is the base 10 for decimal numbers? Because we use 10 digits, the digits 0 through 9.

The Binary Number System The binary number system is called binary because it uses base 2. The values of the positions are calculated by taking 2 to some power. Why is the base 2 for binary numbers ? Because we use 2 digits, the digits 0 and 1.

The Binary Number System (con’t) The binary number system is also a positional numbering system. Instead of using ten digits, 0 - 9, the binary system uses only two digits, 0 and 1. Example of a binary number and the values of the positions: 1 0 0 0 0 0 1 26 25 24 23 22 21 20

Converting from Binary to Decimal 1 0 0 0 0 0 1 1 X 20 = 1 26 25 24 23 22 21 20 0 X 21 = 0 0 X 22 = 0 20 = 1 24 = 16 0 X 23 = 0 21 = 2 25 = 32 0 X 24 = 0 22 = 4 26 = 64 0 X 25 = 0 23 = 8 1 X 26 = 64 65

Converting from Binary to Decimal (con’t) Practice conversions: Binary Decimal 101011 1000001 111

Converting Decimal to Binary First make a list of the values of 2 to the powers of 0 to 8, then use the subtraction method. 20 = 1, 21 = 2, 22 = 4, 23 = 8, 24 = 16, 25 = 32, 26 = 64, 27 = 128, 28 = 256 Example: 42 42 10 2 - 32 - 8 - 2 1 0 1 0 1 0 25 24 23 22 21 20

Counting in Binary Binary 1 10 11 100 101 110 111 Decimal equivalent 1 1 10 11 100 101 110 111 Decimal equivalent 1 2 3 4 5 6 7

Addition of Binary Numbers Examples: 1 0 0 1 0 0 0 1 1 1 0 0 + 0 1 1 0 + 1 0 0 1 + 0 1 0 1 1 1 1 1 1 0 1 0 1 0 0 0 1

Addition of Large Binary Numbers Example showing larger numbers: 1 0 1 0 0 0 1 1 1 0 1 1 0 0 0 1 + 0 1 1 1 0 1 0 0 0 0 0 1 1 0 0 1 1 0 0 0 1 0 1 1 1 1 1 0 0 1 0 1 0

Working with Large Numbers 0 1 0 1 0 0 0 0 1 0 1 0 0 1 1 1 = ? Humans can’t work well with binary numbers; there are too many digits to deal with. Memory addresses and other data can be quite large. Therefore, we sometimes use the hexadecimal number system.

Hexadecimal Binary 0 1 0 1 0 0 0 0 1 0 0 1 0 1 1 1 Hex 5 0 9 7 Written: 509716

What is Hexadecimal really ? Binary 0 1 0 1 0 0 0 0 1 0 0 1 0 1 1 1 Hex 5 0 9 7 A number expressed in base 16. It’s easy to convert binary to hex and hex to binary because 16 is 24.

Hexadecimal Binary is base 2, because we use two digits, 0 and 1 Decimal is base 10, because we use ten digits, 0 through 9. Hexadecimal is base 16. How many digits do we need to express numbers in hex ? 16 (0 through ?) 0 1 2 3 4 5 6 7 8 9 A B C D E F

The Hexadecimal Number System (con’t) Binary Decimal Hexadecimal Binary Decimal Hexadecimal 0 0 0 1010 10 A 1 1 1 1011 11 B 10 2 2 1100 12 C 11 3 3 1101 13 D 100 4 4 1110 14 E 101 5 5 1111 15 F 110 6 6 111 7 7 1000 8 8 1001 9 9

The Hexadecimal Number System (con’t) Example of a hexadecimal number and the values of the positions: 3 C 8 B 0 5 1 166 165 164 163 162 161 160

Example of Equivalent Numbers Binary: 1 0 1 0 0 0 0 1 0 1 0 0 1 1 12 Decimal: 2064710 Hexadecimal: 50A716 Notice how the number of digits gets smaller as the base increases.