THERMOCHEMISTRY THERMODYNAMICS.

Slides:



Advertisements
Similar presentations
Energy and Chemical Reactions Energy is transferred during chemical and physical changes, most commonly in the form of heat.
Advertisements

THERMOCHEMISTRY. Energy The ability to do work or transfer heat.The ability to do work or transfer heat. –Work: Energy used to cause an object that has.
AP CHEMISTRY CHAPTER 6 NOTES THERMOCHEMISTRY
THERMOCHEMISTRY.
6–16–1 Ch. 6 Thermochemistry The relationship between chemistry and energy Basic concept of thermodynamics Energy conversion: Energy: the capacity to do.
THERMODYNAMICS Courtesy of lab-initio.com. Definitions #1 Energy: The capacity to do work or produce heat Potential Energy: Energy due to position or.
Chapter 51 Chapter 6 Thermochemistry Jozsef Devenyi Department of Chemistry, UTM.
Chapter 6 THERMOCHEMISTRY West Valley High School AP Chemistry Mr. Mata.
Thermochemistry Chapter 5. First Law of Thermodynamics states that energy is conserved.Energy that is lost by a system must be gained by the surroundings.
Thermochemistry Chapter 6 AP Chemistry Seneca Valley SHS.
AP Chapter 5 Thermochemistry HW:
Thermochemistry.
The study of the heat flow of a chemical reaction or physical change
Thermodynamics: Energy Relationships in Chemistry The Nature of Energy What is force: What is work: A push or pull exerted on an object An act or series.
Thermodynamics Ch 10 Energy Sections Thermodynamics The 1st Law of Thermodynamics The Law of Conservation of Energy is also known as The 1st.
Part I (Yep, there’ll be a Part II). Energy  The capacity to do work or transfer heat  Measured in Joules  Two Types  Kinetic (motion)  Potential.
Chapter 5 Thermochemistry
CH 6: Thermochemistry. 6.1 Nature of Energy Thermochemistry – study of energy changes during chemical reactions –Aspects of thermochemistry are studied.
THERMOCHEMISTRY Courtesy of lab-initio.com. Definitions #1 Energy: The capacity to do work or produce heat. Potential Energy: Energy due to position or.
Chapter 5: thermochemistry By Keyana Porter Period 2 AP Chemistry.
THERMOCHEMISTRY.
THERMOCHEMISTRY. Definitions #1 Energy: The capacity to do work or produce heat Potential Energy: Energy due to position or composition Kinetic Energy:
HEATS OF REACTION AND CHEMICAL CHANGE
Thermal Chemistry. V.B.3 a.Explain the law of conservation of energy in chemical reactions b.Describe the concept of heat and explain the difference between.
Chapter 6 – Energy. Types of Systems Energy First Law of thermodynamics: The energy of the universe is constant (i.e. energy is neither created nor destroyed)
Energy and Chemical Reactions Energy is transferred during chemical and physical changes, most commonly in the form of heat.
THERMOCHEMISTRY. Definitions #1 Energy: The capacity to do work or produce heat Potential Energy: Energy due to position or composition Kinetic Energy:
THERMOCHEMISTRY. Definitions #1 Energy: The capacity to do work or produce heat Potential Energy: Energy due to position or composition Kinetic Energy:
THERMOCHEMISTRY. Definitions #1 Energy: The capacity to do work or produce heat Potential Energy: Energy due to position or composition Kinetic Energy:
Thermochemistry. Thermodynamics  Study of the changes in energy and transfers of energy that accompany chemical and physical processes.  address 3 fundamental.
Energy Relationships in Chemical Reactions. The nature of Energy and Types of Energy Energy – The capacity to do work Chemists define work as directed.
Energy The capacity to do work or to produce heat.
THERMOCHEMISTRY. Thermochemistry Chapter 6 Definitions #1 Energy: The capacity to do work or produce heat Potential Energy: Energy due to position or.
THERMOCHEMISTRY. Definitions #1 Energy: The capacity to do work or produce heat Potential Energy: Energy due to position or composition Kinetic Energy:
Exothermic  When heat is released (given off) by the system into the surroundings, the process is exothermic  H = H final − H initial  H = H products.
Thermochemistry Chapter 17. Introduction Thermochemistry is the chemistry associated with heat. Heat (q) is a form of energy that flows. Heat flow is.
Chapter 11 Thermo chemistry Heat and Chemical Change The Flow of Energy – Heat Measuring and Expressing Heat Changes Heat in Changes of State Calculating.
THERMOCHEMISTRY. Definitions #1 Energy: The capacity to do work or produce heat Potential Energy: Energy due to position or composition Kinetic Energy:
THERMODYNAMICS Courtesy of lab-initio.com Definitions #1 Energy: The capacity to do work or produce heat (sum of P.E. and K.E) Potential Energy: Energy.
Energy and Chemical Reactions Energy is transferred during chemical and physical changes, most commonly in the form of heat.
Topics 5 and 15. Hess’s Law Calorimetry Enthalpy Enthalpy of Formation Bond Energy.
Chapter 6 Thermochemistry: pp The Nature of Energy Energy – Capacity to do work or produce heat. – 1 st Law of Thermodynamics: Energy can.
Chapter 6 Thermochemistry. Section 6.1 The Nature of Energy Copyright © Cengage Learning. All rights reserved 2  Capacity to do work or to produce heat.
THERMOCHEMISTRY.
Chapter 6 - Thermochemistry
THERMOCHEMISTRY.
Thermochemistry.
Energy Thermodynamics
Thermochemistry Chapter 6.
5/2 Opener What is the difference between a dissolution and a chemical reaction?
Things are “heating up” now!
Energy Changes and Rates of Reaction
THERMOCHEMISTRY.
Capacity to do work or to produce heat
Energy Capacity to do work or to produce heat.
Thermochemistry Miss Knick HAHS © 2009, Prentice-Hall, Inc.
Energy can change form and flow, but it is always conserved.
THERMOCHEMISTRY.
Calorimetry and Enthalpy
Thermochemistry.
Energy The capacity to do work or to produce heat.
THERMODYNAMICS Courtesy of lab-initio.com.
4/30 Opener Identify the following reactions as endo or exothermic:
THERMODYNAMICS Courtesy of lab-initio.com.
THERMOCHEMISTRY Courtesy of lab-initio.com.
Topic 16: Energy and Chemical Change
THERMODYNAMICS Courtesy of lab-initio.com.
Energy Capacity to do work or to produce heat.
Chapter Six: THERMOCHEMISTRY.
Thermochemistry Chapter 17.
Presentation transcript:

THERMOCHEMISTRY THERMODYNAMICS

3 MAIN PROCESSES THAT WILL ALTER THE ENERGY OF A CHEMICAL SYSTEM Heating and cooling Phase changes Chemical reactions

Definitions #1 Energy: The capacity to do work or produce heat Potential Energy: Energy due to position or composition Kinetic Energy: Energy due to the motion of the object

Definitions #2 Law of Conservation of Energy: Energy can neither be created nor destroyed, but can be converted between forms The First Law of Thermodynamics: The total energy content of the universe is constant

Depend ONLY on the present state of the system State Properties (State Functions) The state of a system is described by its composition, temperature and pressure. Depend ONLY on the present state of the system ENERGY IS A STATE FUNCTION A person standing at the top of Mt. Everest has the same potential energy whether they got there by hiking up, or by falling down from a plane! WORK IS NOT A STATE FUNCTION WHY NOT???

SYSTEM and SURROUNDINGS OPEN VS CLOSED SYSTEMS THERMODYNAMIC FUNCTIONS = 3 PARTS (All Thermodynamic Quantities)

E = q + w E = change in internal energy of a system q = heat flowing into or out of the system -q if energy is leaving to the surroundings +q if energy is entering from the surroundings w = work done by, or on, the system -w if work is done by the system on the surroundings +w if work is done on the system by the surroundings

E = q + w Try This! Calculate ΔE for a system undergoing an endothermic process in which 15.6 kJ of heat flows and where 1.4 kJ of work is done on the system. E = q + w ΔE = 15.6 kJ + 1.4 kJ = 17.0 kJ The system has gained 17.0 kJ of energy!

Work, Pressure, and Volume Gas Expansion Compression +V (increase) - V (decrease) -w results +w results Esystem decreases Esystem increases Work has been done by the system on the surroundings Work has been done on the system by the surroundings

Work, Pressure, and Volume Calculate the work associated with the expansion of a gas from 46 L to 64 L at a constant external pressure of 15 atm. W = -15 atm x 18 L = -270 L x atm (gas is expanding , therefore it is doing work on its surroundings!) Energy is flowing out of the gas, so W is a negative quantity

Energy Change in Chemical Processes Endothermic: Reactions in which energy flows into the system as the reaction proceeds. + qsystem - qsurroundings Exothermic: Reactions in which energy flows out of the system as the reaction proceeds. - qsystem + qsurroundings

Endothermic Reactions

Exothermic Reactions

Calorimetry The amount of heat absorbed or released during a physical or chemical change can be measured… …usually by the change in temperature of a known quantity of water 1 calorie is the heat required to raise the temperature of 1 gram of water by 1 C 1 BTU is the heat required to raise the temperature of 1 pound of water by 1 F

4.18 joule = 1 calorie The Joule The unit of heat used in modern thermochemistry is the Joule 4.18 joule = 1 calorie

A Cheaper Calorimeter

A Bomb Calorimeter

A Cheaper Calorimeter

A Bomb Calorimeter

Heat Capacity C heat absorbed C = Increase in temperature Not enough!…………..When a substance is heated, the energy required will depend on ??? AMOUNT OF SUBSTANCE Specific Heat Capacity – J/oC x g or J/K x g Molar Heat Capacity – J/oC x mol or J/K x mol

Calculations Involving Specific Heat OR c = Specific Heat Capacity q = Heat lost or gained T = Temperature change m = mass of the solution

ΔH What is this????? ENTHALPY

Let’s Test Our “Calorimetry “Acumen” Suppose we mix 50.0 mL of 1.0 M HCl at 25oC with 50.0 mL of 1.0 M NaOH also at 25oC in a calorimeter. After the reactants are mixed by stirring, the temperature is observed to increase to 31.9oC. (Assume that the solution can be treated as if it were pure water with a density of 1.0 g/mL and the Specific Heat Capacity (SHC) of water = 4.18 J/oC-g How much energy is released?

Answer is………….??? 2.9 x 103 J

What is the advantage of using enthalpy rather than internal energy to describe energy changes in reactions? 101415

A piston performs work of 210 L-atm on the surroundings, while the cylinder in which it is placed expands from 10. L to 25 L. At the same time, 45 J of heat is transferred from the surroundings to the system. Against what pressure was the piston working? W = -PΔV -210 L-atm = -P(25-10) P = 14 atm

6.4 Standard Enthalpies of Formation The standard enthalpy of formation (ΔHof) of a compound is defined as the change in enthalpy that accompanies the formation of one mole of a compound from its elements with all substances in their standard state The above degree symbol indicates that the corresponding process has been carried out under standard conditions. The standard state for a substance is a precisely defined reference state. Conventional Definitions of Standard States for a compound or element are located on pg. 246 in your textbook.

Key Concepts When Doing Enthalpy Calculations: When a reaction is reversed, the magnitude of ΔH remains the same, but its sign changes When the balanced equation for a reaction is multiplied by an integer, the value of ΔH for that reaction must be multiplied by the same integer. Elements in their standard states are not included in the ΔH reaction calculations. That is ΔH of for an element in its standard state is zero.

ΔH o reaction = Σnp ΔH of(products) - Σnr ΔH of(reactants) The change in enthalpy for a given reaction can be calculated from the enthalpies of formation of the reactants and products: ΔH o reaction = Σnp ΔH of(products) - Σnr ΔH of(reactants)

Calculation of Heat of Reaction Calculate H for the combustion of methane, CH4: CH4 + 2O2  CO2 + 2H2O Hrxn =  Hf(products) -   Hf(reactants)     Substance Hf   CH4 -74.80 kJ O2 0 kJ CO2 -393.50 kJ H2O -285.83 kJ O Hrxn = [-393.50kJ + 2(-285.83kJ)] – [-74.80kJ] Hrxn = -890.36 kJ

Specific Heat Capacity The amount of heat required to raise the temperature of one gram of substance by one degree Celsius. Substance Specific Heat (J/g·C) Water (liquid) 4.18 Ethanol (liquid) 2.44 Water (solid) 2.06 Water (vapor) 1.87 Aluminum (solid) 0.897 Carbon (graphite,solid) 0.709 Iron (solid) 0.449 Copper (solid) 0.385 Mercury (liquid) 0.140 Lead (solid) 0.129 Gold (solid)