IMPERFECTIONS IN SOLIDS

Slides:



Advertisements
Similar presentations
CHAPTER 4: IMPERFECTIONS IN SOLIDS
Advertisements

Chapter 5 Defects in solids
The Muppet’s Guide to: The Structure and Dynamics of Solids 5. Crystal Growth II and Defects.
Chapter 5: Imperfections in Solids
CHAPTER 4: IMPERFECTIONS IN SOLIDS
A (0001) plane for an HCP unit cell is show below.
Chapter ISSUES TO ADDRESS... What types of defects arise in solids? Can the number and type of defects be varied and controlled? How do defects affect.
Imperfections in Solid Materials R. Lindeke ENGR 2110.
1. Chapter 4: Imperfections in Solids 2 Introduction Metals Alloys Solid solutions New/second phase Solute (guest) Solvent (host)
CHAPTER 4: IMPERFECTIONS IN SOLIDS
IMPERFECTIONS IN SOLIDS Week Solidification - result of casting of molten material –2 steps Nuclei form Nuclei grow to form crystals – grain structure.
The Muppet’s Guide to: The Structure and Dynamics of Solids 6. Crystal Growth & Defects.
The Muppet’s Guide to: The Structure and Dynamics of Solids 6. Crystal Growth & Defects.
ISSUES TO ADDRESS... What types of defects arise in solids? Can the number and type of defects be varied and controlled? How do defects affect material.
MSE 528 Crystal structures and Defects Fall 2010.
Dislocations – Linear Defects –Two-dimensional or line defect –Line around which atoms are misaligned – related to slip Edge dislocation: –extra half-plane.
Crystalline Arrangement of atoms. Chapter 4 IMPERFECTIONS IN SOLIDS The atomic arrangements in a crystalline lattice is almost always not perfect. The.
Dislocations and Strengthening
Chapter ISSUES TO ADDRESS... What types of defects arise in solids? Can the number and type of defects be varied and controlled? How do defects affect.
CHE 333 Class 12 Defects in Crystals.. Perfect Structure Perfect Structure for FCC, BCC and HCP crystals – all atom sites filled with an atom. Reality.
Why are we interested IMPERFECTIONS IN SOLIDS ?
Materials Engineering – Day 5
Solidification & Crystalline Imperfections
Chapter 5 - Imperfections in Solids
Why are we interested IMPERFECTIONS IN SOLIDS ?
The Muppet’s Guide to: The Structure and Dynamics of Solids 5. Crystal Growth II and Defects.
Chapter ISSUES TO ADDRESS... What types of defects arise in solids? Can the number and type of defects be varied and controlled? How do defects affect.
Lecture 3.0 Structural Defects Mechanical Properties of Solids.
ISSUES TO ADDRESS... What types of defects arise in solids? Can the number and type of defects be varied and controlled? How do defects affect material.
Crystallographic Planes
Chapter ISSUES TO ADDRESS... What types of defects arise in solids? Can the number and type of defects be varied and controlled? How do defects affect.
Chapter 4- ISSUES TO ADDRESS... What types of defects arise in solids? Can the number and type of defects be varied and controlled? How do defects affect.
Types of Materials Metals : –Strong, ductile –high thermal & electrical conductivity –opaque Polymers/plastics : Covalent bonding  sharing of e’s –Soft,
Chapter ISSUES TO ADDRESS... What types of defects arise in solids? Can the number and type of defects be varied and controlled? How do defects affect.
Chapter 4-15 Grain boundaries: are boundaries between crystals. are produced by the solidification process, for example. have a change in crystal orientation.
Chapter 4- ISSUES TO ADDRESS... What types of defects arise in solids? Can the number and type of defects be varied and controlled? How do defects affect.
Vacancies: -vacant atomic sites in a structure. Self-Interstitials: -"extra" atoms positioned between atomic sites. POINT DEFECTS CHAPTER 4: IMPERFECTIONS.
IMPERFECTIONS IN SOLIDS
STRUCTURAL IMPERFECTIONS (DEFECTS) IN CRYSTALLINE SOLIDS
CHAPTER 3: INELASTIC DEFORMATION. 6 Vacancies: -vacant atomic sites in a structure. Self-Interstitials: -"extra" atoms positioned between atomic.
The Structure and Dynamics of Solids
Interactions of Quasiparticles
Chapter DEĞİNELECEK HUSUSLAR... Katılarda hangi tip kusurlar bulunmaktadır? Kusurların türünü ve sayısını kontrol etmek ya da değiştirmek mümkün.
A (0001) plane for an HCP unit cell is show below.
Imperfections in Solids
Theoretical Strength Point Defects Linear Defects Planar Defects Volume Defects Microscopy Please read Chapter 4Please read Chapter 4 ME 330 Engineering.
Chapter ISSUES TO ADDRESS... What types of defects arise in solids? Can the number and type of defects be varied and controlled? How do defects affect.
Material science & Metallurgy L D College of Engineering Mechanical Engineering 1.
1 Length Scale of Imperfections Vacancies, impurities dislocations Grain and twin boundaries Voids Inclusions precipitates point, line, planar, and volumetric.
Chapter ISSUES TO ADDRESS... What types of defects arise in solids? Can the number and type of defects be varied and controlled? How do defects affect.
Chapter 6: Imperfections in Solids
Chapter 5: Imperfections in Solids
Crystal Lattice Imperfections
CH-4: Imperfections in Solids
Play movie  LINE DEFECTS Dislocations: • are line defects,
Dislocations and Strengthening
CHAPTER 4: IMPERFECTIONS IN SOLIDS
CHAPTER 4: IMPERFECTIONS IN SOLIDS
CHAPTER 4: IMPERFECTIONS IN SOLIDS
Chapter 3:week 8 Solid State Chemistry Imperfections in Solid Materials Band theory, insulators, semi conductors p-type and n-type semiconductors and.
Imperfections in Solid Materials
Chapter 6: Imperfections in Solids
Description & importance
TOPIC 2: SOLIDIFICATIONS, IMPERFECTIONS IN SOLIDS & DIFFUSIONS
CHAPTER 4: IMPERFECTIONS IN SOLIDS
TOPIC 2: Diffusion in Solids
Chapter ISSUES TO ADDRESS... What types of defects arise in solids? Can the number and type of defects be varied and controlled? How do defects affect.
CRYSTAL IMPERFECTIONS
Imperfections in Solids
Presentation transcript:

IMPERFECTIONS IN SOLIDS ISSUES TO ADDRESS... • What are the solidification mechanisms? • What types of defects arise in solids? • Can the number and type of defects be varied and controlled? • How do defects affect material properties? • Are defects undesirable?

Imperfections in Solids Solidification- result of casting of molten material 2 steps Nuclei form Nuclei grow to form crystals – grain structure Start with a molten material – all liquid nuclei crystals growing grain structure liquid Adapted from Fig.4.14 (b), Callister 7e. Crystals grow until they meet each other

Polycrystalline Materials Grain Boundaries regions between crystals transition from lattice of one region to that of the other slightly disordered low density in grain boundaries high mobility high diffusivity high chemical reactivity Adapted from Fig. 4.7, Callister 7e.

Imperfections in Solids There is no such thing as a perfect crystal. What are these imperfections? Why are they important? Many of the important properties of materials are due to the presence of imperfections.

Types of Imperfections • Vacancy atoms • Interstitial atoms • Substitutional atoms Point defects • Dislocations Line defects • Grain Boundaries Area defects

Point Defects Vacancy self- interstitial • Vacancies: -vacant atomic sites in a structure. Vacancy distortion of planes • Self-Interstitials: -"extra" atoms positioned between atomic sites. self- interstitial distortion of planes

Equilibrium Concentration: Point Defects • Equilibrium concentration varies with temperature! No. of defects Activation energy æ - ö N Q v ç v ÷ = exp ç ÷ No. of potential è ø N k T defect sites. Temperature Boltzmann's constant -23 (1.38 x 10 J/atom-K) -5 (8.62 x 10 eV/atom-K) Each lattice site is a potential vacancy site

Estimating Vacancy Concentration • Find the equil. # of vacancies in 1 m3 of Cu at 1000C. • Given: 3 r = 8.4 g / cm A = 63.5 g/mol Cu Q = 0.9 eV/atom N = 6.02 x 1023 atoms/mol A v 8.62 x 10-5 eV/atom-K 0.9 eV/atom 1273K ç ÷ N v = exp - Q k T æ è ö ø = 2.7 x 10-4 N A 106 cm3 1m3 For 1 m3 , N = r x x = 8.0 x 1028 sites/m3 A Cu • Answer: N v = (2.7 x 10-4)(8.0 x 1028) sites = 2.2 x 1025 vacancies

Point Defects in Alloys Two outcomes if impurity (B) added to host (A): • Solid solution of B in A (i.e., random dist. of point defects) Solute OR Solvent Substitutional solid soln. (e.g., Cu in Ni) Interstitial solid soln. (e.g., C in Fe) • Solid solution of B in A plus particles of a new phase (usually for a larger amount of B) Second phase particle --different composition --often different structure.

Imperfections in Solids Linear Defects (Dislocations) Are one-dimensional defects around which atoms are misaligned Edge dislocation: extra half-plane of atoms inserted in a crystal structure b  to dislocation line Screw dislocation: spiral planar ramp resulting from shear deformation b  to dislocation line Burger’s vector, b: measure of lattice distortion

Line Defects Dislocations: Schematic of Zinc (HCP): slip steps and • are line defects, • slip between crystal planes result when dislocations move, • produce permanent (plastic) deformation. Schematic of Zinc (HCP): • before deformation • after tensile elongation slip steps and slip planes Adapted from Fig. 7.8, Callister 7e.

Imperfections in Solids Edge Dislocation: extra half-plane of atoms inserted in a crystal structure b  to dislocation line Fig. 4.3, Callister 7e.

Motion of Edge Dislocation • Dislocation motion requires the successive bumping of a half plane of atoms (from left to right here). • Bonds across the slipping planes are broken and remade in succession. Atomic view of edge dislocation motion from left to right as a crystal is sheared. Force Force (Courtesy P.M. Anderson)

Imperfections in Solids Screw Dislocation Top View Screw Dislocation b Dislocation line Burgers vector b (b) (a) Adapted from Fig. 4.4, Callister 7e.

Edge, Screw, and Mixed Dislocations Adapted from Fig. 4.5, Callister 7e.

Imperfections in Solids Dislocations are visible in electron micrographs Adapted from Fig. 4.6, Callister 7e.

Imperfections in Solids Linear Defects (Dislocations) Are one-dimensional defects around which atoms are misaligned Edge dislocation: extra half-plane of atoms inserted in a crystal structure b  to dislocation line Screw dislocation: spiral planar ramp resulting from shear deformation b  to dislocation line Burger’s vector, b: measure of lattice distortion

Dislocations & Crystal Structures • Structure: close-packed planes & directions are preferred. view onto two close-packed planes. close-packed directions close-packed plane (bottom) close-packed plane (top) • Comparison among crystal structures: FCC: many close-packed planes/directions; HCP: only one plane, 3 directions; tensile direction • Specimens that were tensile tested. Mg (HCP) Necking Al (FCC)

Planar Defects in Solids One case is a twin boundary (plane) Essentially a reflection of atom positions across the twin plane. Stacking faults For FCC metals an error in ABCABC packing sequence Ex: ABCABABC Adapted from Fig. 4.9, Callister 7e.

Summary • Point, Line, and Area defects exist in solids. • The number and type of defects can be varied and controlled (e.g., T controls vacancy conc.) • Defects affect material properties (e.g., grain boundaries control crystal slip). • Defects may be desirable or undesirable (e.g., dislocations may be good or bad, depending on whether plastic deformation is desirable or not.)