Presentation is loading. Please wait.

Presentation is loading. Please wait.

Chapter 5 - Imperfections in Solids

Similar presentations


Presentation on theme: "Chapter 5 - Imperfections in Solids"— Presentation transcript:

1 Chapter 5 - Imperfections in Solids
Point Defects Metals Ceramics Impurities Composition Calculations Dislocations Interfacial Defects

2 Chapter 5 (continued) Qualitative Questions
23 Describe the different kinds of point defects that exist in solids. Include the specific differences that exist in ceramic crystal structures. 24 Define the term solution. Describe the two kinds of solid solutions and the kinds of atoms that are involved in each. 25 Describe edge and screw dislocations. Include the appearance of the dislocation and the orientation of the distortion relative to the dislocation. Quantitative Questions 6 Be able to convert atomic percent to weight percent and vice-versa

3 Chapter 5 (continued) Introduction
Solids are never _______________________________. Many properties are ____________________________. Often the imperfections are _______________________ _________. A defect is defined as anything that _________________ _______________ of the solid.

4 Chapter 5 (continued) Defects are usually classified by their dimensionality __________________ (vacancies, interstitialcies, impurities, etc) __________________ (dislocations) __________________ (surfaces, grain boundary, phase boundaries, etc)

5 Chapter 5 (continued) Point Defects
There are several types of point defects ___________ definition - a ________________ rarely more than _____________ atoms missing there is a tendency for vacancies to cluster vacancies can move This is caused by atomic movement

6 Chapter 5 (continued) Figure 5.1

7 Chapter 5 (continued) The concentration of vacancies ( #/volume) is a function of temperature where Nv = the number of vacancies / volume N = the total number of atomic sites Qv = the energy required to form a vacancy k = the Boltzmann constant = 1.38x10-23 J/(atom K) T = the absolute temperature

8 Chapter 5 (continued) Point Defects (cont.)
___________ - ___________________________________ could be a ________________, but not common due to the stress involved (This topic will return in the impurity section)

9 Chapter 5 (continued) Point Defects in Ceramics
Both vacancies and interstitialcies are possible. Anion interstitialcies are rare. _________________ must be maintained _____________________________

10 Chapter 5 (continued) Point Defects in Ceramics (cont.) Figure 5.2

11 Chapter 5 (continued) Point Defects in Ceramics (cont.)
Ceramic point defects can categorized based on the _______________________________ ___________ ______ - the species ______ given by the ______________ is maintained with the defects _____________________ - a deviation from the formula ratio is needed to ________________

12 Chapter 5 (continued) Point Defects in Ceramics (cont.)
ex. - if (2) Fe+3 replace (2) Fe+2 another Fe+2 must be removed Figure 5.4

13 Chapter 5 (continued) Impurities in Solids
There are always _____________ in any metallic crystal These can show up as point defects Most familiar metals are ________. The impurity atoms are added ______________. This ______________________. For example, improved mechanical strength and corrosion resistance

14 Chapter 5 (continued) Impurities in Solids (cont)
Alloys can have two _________________________ (multiphase), or be a ______________________. Definitions ______ - the element or compound present in the ____________ (the base lattice structure) __________ amount (the "impurity")

15 Chapter 5 (continued) Impurities in Solids (cont) Definitions (cont)
_____ - a _______________________ of a material with ____________________________________ _____________ - two or more elements ____________ _____________________________ __________________________________________________________________________________________ There are 2 types of solid solutions - ______________ ___________

16 Chapter 5 (continued) Impurities in Solids (cont.) Figure 5.5

17 Chapter 5 (continued) Substitutional Solid Solution
solute atoms ___________ for solvent atoms in the lattice The solvent crystal structure is ______________________ The fraction of substitution can range from 0 to 100%

18 Chapter 5 (continued) Substitutional Solid Solution (cont.)
For ________________________. (In order of importance) ______________ must not differ by more than 15% __________________________ must be the same small difference in ___________________ ____________. More solubility of solute if it has a higher valence than the solvent ( see front cover for copper / nickel )

19 Chapter 5 (continued) Interstitial Solid Solutions
The solute atoms ________________________ (spaces) in the lattice Occurs when one atom is much larger than the other ( typically occurs with ____________ ) Even small atoms (except for H) are ________________ ______________ . Therefore, the ___________________________ (< 10%) (ex. - about 2% for C in Fe)

20 Chapter 5 (continued) Impurities in Ceramics
Either substitutional or interstitial impurities are possible Remember _______________. All interstitial impurities and some substitution impurities require a ____________. Substitutions of the same charge do not require another change. If not another change must be made, it could be a __________________________________________

21 Chapter 5 (continued) Impurities in Ceramics (cont.)
Example Problem 5.2 Assume a Ca+2 substitutes for an Na+1 in an NaCl structure Possible second changes: _________________________________

22 Chapter 5 (continued) Composition Conversion
I don’t like the presentation in the book. This is more general. _____________________________________________________________________________________ Procedure choose a basis of what you know use the atomic weight to change to the desired basis calculate percentages in new basis

23 Chapter 5 (continued) Composition Conversion (cont.)
example mole percent to weight percent An alloy consists of 20 mole % Cu, 30 mole % Sn and 50 mole % Pb. What is the composition on a weight percent basis? assume 100 moles total convert to mass units calculate weight percents

24 Chapter 5 (continued) Composition Conversion (cont.)
20 mole Cu * 63.5 g/mole = g Cu 30 mole Sn * g/mole = g Sn 50 mole Pb * g/mole = g Pb 15191 g total 1270 / = g Cu / g tot or wt % Cu 3561 / = g Sn / g tot or wt % Sn 10360 / = g Pb / g tot or wt % Pb

25 Chapter 5 (continued) Composition Conversion (cont.)
example weight percent to mole percent A mixture consists of 10 wt % hydrogen (H), 30 wt % nitrogen (N), and 60 wt % chlorine (Cl). What is the composition on a mole percent basis? assume 100 grams total convert to mole units calculate mole percents

26 Chapter 5 (continued) Composition Conversion (cont.)
10 g H / g/mole = mole H 30 g N / 14 g/mole = mole N 60 g Cl / g/mole = mole Cl 13.75 mole total 9.92 / = mol H / mol tot or mol % H 2.14 / = mol N / mol tot or mol % N 1.69 / = mol Cl / mol tot or mol % Cl

27 Chapter 5 (continued) Linear Defects - (aka Dislocations)
A _________________ defect around which the ________ ______________ . There are two types of dislocations, plus combinations ________________

28 Chapter 5 (continued) Linear Defects (cont.) Edge dislocation
A _______________ which terminates within the crystal. There is _______________________________________. Compression on one side, tension on the other. The distortion is _______________ to the dislocation line.

29 Chapter 5 (continued) Edge dislocation (cont.) Figure 5.7

30 Chapter 5 (continued) Linear Defects (cont.) Screw dislocation
Caused by a ______________. A portion of the crystal is shifted by one atom. Looks like a _____________. The distortion is ___________ to the dislocation line

31 Chapter 5 (continued) Figure 5.8 Screw dislocation

32 Chapter 5 (continued) Linear Defects (cont.) Mixed Dislocation
Often dislocations show features of both Figure 5.9

33 Chapter 5 (continued) Interfacial Defects ________________defects.
Anything that deviates from perfect crystal packing _____________________________________________ External surfaces The external atoms are not surrounded by all possible nearest neighbors, therefore they are at a higher energy.

34 Chapter 5 (continued) Interfacial Defects (cont) Grain boundaries
There is an ________________ where the grains meet These can be low angle or high angle The atoms are less tightly packed, __________________ ___________________ . Grain boundaries are more chemically reactive

35 Chapter 5 (continued) Interfacial Defects (cont) Figure 5.11

36 Chapter 5 (continued) Interfacial Defects (cont) Tilt Boundaries
________________ can _______ themselves. This extends the defect into a second dimension. Figure 5.12

37 Chapter 5 (continued) Interfacial Defects (cont) Twin Boundaries
A __________ lattice symmetry Occurs along specific crystal planes. Figure 5.13

38 Chapter 5 (continued) Interfacial Defects (cont)
Miscellaneous interfacial defects _______ faults from a break in the _______ pattern in FCC crystals or __________ pattern in HCP crystals Phase boundaries (see Chapter 10)


Download ppt "Chapter 5 - Imperfections in Solids"

Similar presentations


Ads by Google