quark angular momentum in lattice QCD

Slides:



Advertisements
Similar presentations
Lattice study for penta-quark states
Advertisements

Mass, Quark-number, Energy Dependence of v 2 and v 4 in Relativistic Nucleus- Nucleus Collisions Yan Lu University of Science and Technology of China Many.
TQFT 2010T. Umeda (Hiroshima)1 Equation of State in 2+1 flavor QCD with improved Wilson quarks Takashi Umeda (Hiroshima Univ.) for WHOT-QCD Collaboration.
A status report of the QCDSF N f =2+1 Project Yoshifumi Nakamura (NIC/DESY) for the QCDSF collaboration Lattice Regensburg Aug. 3, 2007.
The N to Delta transition form factors from Lattice QCD Antonios Tsapalis University of Athens, IASA EINN05, Milos,
1 Thermodynamics of two-flavor lattice QCD with an improved Wilson quark action at non-zero temperature and density Yu Maezawa (Univ. of Tokyo) In collaboration.
Xiangdong Ji University of Maryland/SJTU Physics of gluon polarization Jlab, May 9, 2013.
9/19/20151 Nucleon Spin: Final Solution at the EIC Feng Yuan Lawrence Berkeley National Laboratory.
Finite Density with Canonical Ensemble and the Sign Problem Finite Density Algorithm with Canonical Ensemble Approach Finite Density Algorithm with Canonical.
Spin Azimuthal Asymmetries in Semi-Inclusive DIS at JLAB  Nucleon spin & transverse momentum of partons  Transverse-momentum dependent distributions.
XI th International Conference on Quark Confinement and the Hadron Petersburg, Russia Philipp Gubler (RIKEN, Nishina Center) Collaborator:
Eigo Shintani (KEK) (JLQCD Collaboration) KEKPH0712, Dec. 12, 2007.
Beta-function as Infrared ``Phenomenon” RG-2008 (Shirkovfest) JINR, Dubna, September Oleg Teryaev JINR.
Generalized Form Factors, Generalized Patron Distributions, and Spin Contents of the Nucleon with Y. Nakakoji (Osaka Univ.) 1. Introduction - Still unsolved.
Scaling study of the chiral phase transition in two-flavor QCD for the improved Wilson quarks at finite density H. Ohno for WHOT-QCD Collaboration The.
Jim Stewart DESY Measurement of Quark Polarizations in Transversely and Longitudinally Polarized Nucleons at HERMES for the Hermes collaboration Introduction.
Pion mass difference from vacuum polarization E. Shintani, H. Fukaya, S. Hashimoto, J. Noaki, T. Onogi, N. Yamada (for JLQCD Collaboration) December 5,
大西 陽一 (阪 大) QCDの有効模型に基づく光円錐波動関数を用い た 一般化パートン分布関数の研究 若松 正志 (阪大)
Measurements with Polarized Hadrons T.-A. Shibata Tokyo Institute of Technology Aug 15, 2003 Lepton-Photon 2003.
Huey-Wen Lin — Workshop1 Semileptonic Hyperon Decays in Full QCD Huey-Wen Lin in collaboration with Kostas Orginos.
GPD and underlying spin structure of the nucleon M. Wakamatsu and H. Tsujimoto (Osaka Univ.) 1. Introduction - Still unsolved fundamental puzzle in hadron.
Tensor and Flavor-singlet Axial Charges and Their Scale Dependencies Hanxin He China Institute of Atomic Energy.
Lattice Calculation of New Mesons in the Charm Region and Nucleon Structure Synopsis of Lattice QCD Study of X(2317) as a Tetraquark Mesonium Glue and.
Xiangdong Ji University of Maryland — RIKEN workshop on polarized gluon distributions, Dec. 3, 2005 — Gluons in the proton.
GPD and underlying spin structure of the Nucleon M. Wakamatsu and H. Tsujimoto (Osaka Univ.) 1. Introduction Still unsolved fundamental puzzle in hadron.
Xiangdong Ji U. Maryland/ 上海交通大学 Recent progress in understanding the spin structure of the nucleon RIKEN, July 29, 2013 PHENIX Workshop on Physics Prospects.
A sideways look into the proton Transverse momentum and transverse spin in QCD Alessandro Bacchetta.
Low energy scattering and charmonium radiative decay from lattice QCD
Spin physics with COMPASS
Nucleon spin decomposition
Origin of Nucleon Mass in Lattice QCD
Generalized Parton Distributions (GPD)
Generalized Parton Distributions and Deep Virtual Compton Scattering
Baryons on the Lattice Robert Edwards Jefferson Lab Hadron 09
Lattice College of William and Mary
Long-range plan of nuclear physics in Japan
Generalized Parton Distributions Michel Guidal (IPN Orsay)
Theory : phenomenology support 12 GeV
Measurements of quark transversity and orbital motion in hard scattering Yoshiyuki Miyachi Tokyo Institute of Technology.
Luciano Pappalardo for the collaboration
Structure and Dynamics of the Nucleon Spin on the Light-Cone
Higher twist effects in polarized experiments
The Spin of the Nucleon --- The View from HERMES ---
3/19/20181 Nucleon Spin: Final Solution at the EIC Feng Yuan Lawrence Berkeley National Laboratory.
Nucleon Resonances from Lattice QCD
Future Prospects from Lattice QCD
Hadrons and Nuclei : Chiral Symmetry and Baryons
Low-energy precision observables and the role of lattice QCD
Properties of the Quark-Gluon Plasma
--- New Results from HERMES ---
Shape and Structure of the Nucleon
Excited State Spectroscopy from Lattice QCD
Exciting Hadrons Vladimir Pascalutsa
Semi-inclusive DIS at 12 GeV
Transverse distributions of polarized quarks
Measurement of Transverse Spin Effects at COMPASS
Generalized Parton Distributions at
Transversity Distributions and Tensor Charges of the Nucleon
格子QCDによる核子の一般化パートン分布と
Selected Physics Topics at the Electron-Ion-Collider
Strangeness and glue in the nucleon from lattice QCD
Excited State Spectroscopy from Lattice QCD
Neutron EDM with external electric field
Single Spin Asymmetry with a Transversely Polarized
Measurement of Transverse Spin Effects at COMPASS
New Results on 0 Production at HERMES
The phi meson at finite density from a QCD sum rules + MEM approach
Exclusive production at HERMES
Transverse distributions of polarized quarks
EoS in 2+1 flavor QCD with improved Wilson fermion
Presentation transcript:

quark angular momentum in lattice QCD Munehisa Ohtani ( Kyorin Univ., Regensburg Univ.) for UKQCD-QCDSF collab. with D. Brömmel, M. Göckeler, Ph. Hägler, R. Horsley, Y. Nakamura, D. Pleiter, P.E.L. Rakow, A. Schäfer, G. Schierholz, W. Schroers, H. Stüben, J.M. Zanotti Introduction Form Factors and Observables Numerical results of lattice simulation - Axial FF and quark spin - Moments of GPD(vector) and total angular momentum Summary 8 Apr. Spin-Hadron@ RIKEN

Introduction Non perturbative study on Nucleon structure  Generalized Parton Distributions of Nucleon q q' momentum transfer squared: t = (D  P'-P)2 longitudinal mt. transfer:  = -n ·D / 2 x+ x- H, E, … P P' Non perturbative study on Nucleon structure

Generalized Parton Distributions PDF Form Factors F1(t) =  dx H (x, x, t) GA(t) =  dx H (x, x, t) GT(t) =  dx HT(x, x, t)  local limit q(x) Dq(x) dq(x)  = H (x,0,0) = HT(x,0,0) forward limit GPDs J q = 1/2  dx x (H(x, x, 0) + E(x, x, 0)) u+d  1/2 ( A20 + B20 ) s q = 1/2  dx H(x, x, 0)u+d  1/2 A10  Angular momentum as moments in the forward limit Fourier transf. Quark density in b plane q(x, b2) =  d2 D e–i Db H (x, x=0, D2)

Moments of GPD: Generalized Form Factors  Polynomiality  X.-D.Ji, J.Phys.G24(1998)1181 An,2k , Bn,2k , Cn are related to  P |q g {m 1Dm 2  Dm n}q |P'   LHPC, PRD68(2003)034505 Calculate ratio of 2pt & 3pt correlation functions on lattice Extract GFF Vector current, EM tensor

Simulation parameters b k volume a [fm] mp[GeV]  Nf =2 Wilson fermions w/ clover improvement  # of config: 400-2200 for each(b,k)  Physical unit translated by r0c / a O(a) improved operators  non-perturbative renormalization into MS @ m = 2 GeV 5.20 0.0856 0.13420 0.13500 0.13550 163  32 〃 1.347 0.956 0.670 5.25 0.0794 0.13460 0.13520 0.13575 0.13600 1.225 0.949 0.635 0.457 243  48 〃 163  32 〃 5.29 0.0753 0.13400 0.13500 0.13550 0.13590 0.13620 0.13632 1.511 1.102 0.857 0.629 0.414 0.345 243  48 〃 323  64 5.40 0.0672 0.13500 0.13560 0.13610 0.13625 0.13640 243  48 〃 1.183 0.917 0.648 0.559 0.450

t dependence of Axial Form Factor   V.Bernard et.al. J.Phys.G 28(2002)R1 cf. A10u-d from expt: p + e  e' + p + + n  A10u+d (t) with b = 5.29,k = 1.3632 Dipole form: A10   -t [GeV2]

Chiral extrapolation and quark spin  A10u+d (t=0) : 2 s u+d = DSu+d  0.402 0.024 (@ mp = .14GeV) Strong mp dependence by “chiral log” term HERMES, PRD75(2007)012007  Heavy Baryon Chiral Perturbation Theory  M.Diehl, A.Manashov, A.Schäfer, EPJ.A 29(2006) mp 2[GeV2]

t dependence of the 2nd Moments A20u-d (t), B20u-d (t) and C20u-d (t) with b = 5.29,k = 1.3632 -t [GeV2]

Dipole mass of A20 and tensor meson mD [GeV] Dipole form: A20  x . (1 - t / mD2)2 in CQSM for comparison  K. Goeke et. al., PRC75(2007)  Observed mass of f2

Chiral extrapolation of A20u+d(t =0)  M.Dorati et.al. nucl-th/0703073 A20u+d (t=0)  x u+d  0.572 0.012 (@ mp = .14GeV)  CTEQ6 @m 2 = 4GeV2 mp 2[GeV2]

Chiral extrapolation of A20u-d(t =0)  x u-d  0.198 0.008 (@ mp = .14GeV) A20u-d (t=0)  CTEQ6 @m 2 = 4GeV2 Strong mp dependence by “chiral log” term mp 2[GeV2]

Generalized Form Factors in Chiral Perturbation  M.Dorati, T.A.Gail and T.R.Hemmert, nucl-th/0703073  3 param. in each GFFs  t dependence via

Dipole fit and forward limit of B20u,d(t )  2 J q -  x q t  0 B20q (t) in CQSM  J u+d = 1/2  x u+d = 1 ) no dynamical gluon   K.Goeke et. al., PRC75(2007) in CQSM for comparison -t [GeV2]

B20u+d( t ) and covariantized Baryon ChPT

Chiral extrapolation of B20u+d(0) (@ mp = .14GeV) B20u+d (0) Strong mp dependence by “chiral log” term mp 2[GeV2]

B20u-d(t ) and covariantized Baryon ChPT

Chiral extrapolation of B20u-d(0) (@ mp = .14GeV) B20u-d (0) mp 2[GeV2]

Chiral extrapolation of Ju , Jd Ji’s sum rule :  J q = 1/2 [ A20q (0) +B20q(0) ]  J u  0.230 0.008  J d  -0.004 0.008 (@ mp = .14GeV) mp 2[GeV2]

decomposition of quark angular momentum J u+d = 1/2 [ A20u+d (0) +B20u+d(0) ]  s u+d = 1/2 A10u+d (0) ; Lu+d =  J u+d -  s u+d   J u+d  0.226 0.013  s u+d  0.201 0.024  L u+d  0.025 0.027 (@ mp = .14GeV) mp 2[GeV2]

Summary and outlook lattice simulation of moments of Generaized Parton Distribution  spin content, transverse quark distribution, DVCS,… dipole mass of A20 is comparable with tensor meson mass. A20u-d and B20u+d have strong “chiral log” corrections. Chiral extrapolation of A20 (0) & B20 (0) via BChPT nucl-th/0703073 leads  J u  0.230 0.008  J d  -0.004 0.008 lighter mp , larger volume (for t 0), Finite size corrections, Continuum limit, disconnected diagram, Chirally improved fermions, higher twist, angular momentum of gluon, …  J u+d  0.226 0.013  s u+d  0.201 0.024 (@ mp = .14GeV)  L u+d  0.025 0.027