Nuclear Tidal Waves Daniel Almehed Stefan Frauendorf Yongquin Gu

Slides:



Advertisements
Similar presentations
CoulEx. W. Udo Schröder, 2012 Shell Models 2 Systematic Changes in Nuclear Shapes Møller, Nix, Myers, Swiatecki, Report LBL 1993: Calculations fit to.
Advertisements

Some (more) Nuclear Structure
Consistent analysis of nuclear level structures and nucleon interaction data of Sn isotopes J.Y. Lee 1*, E. Sh. Soukhovitskii 2, Y. D. Kim 1, R. Capote.
Collective properties of even- even nuclei Vibrators and rotors With three Appendices.
Isomers and shape transitions in the n-rich A~190 region: Phil Walker University of Surrey prolate K isomers vs. oblate collective rotation the influence.
The Collective Model Aard Keimpema.
Structure of odd-odd nuclei in the interacting boson fermion-fermion model 3.
Projected-shell-model study for the structure of transfermium nuclei Yang Sun Shanghai Jiao Tong University Beijing, June 9, 2009.
Nuclear Tidal Waves Daniel Almehed Stefan Frauendorf Yongquin Gu Yang Sun.
Tidal Waves and Spatial Symmetry Daniel Almehed Stefan Frauendorf Yongquin Gu.
W. Udo Schröder, 2005 Rotational Spectroscopy 1. W. Udo Schröder, 2005 Rotational Spectroscopy 2 Rigid-Body Rotations Axially symmetric nucleus 
Study Of Nuclei at High Angular Momentum – Day 3 Michael P. Carpenter Nuclear Physics School, Goa, India Nov. 9-17, 2011 Some Current Topics In High-Spin.
Nuclei with more than one valence nucleon Multi-particle systems.
Generalized Density Matrix Revisited
Study Of Nuclei at High Angular Momentum – Day 2 Michael P. Carpenter Nuclear Physics School, Goa, India Nov. 9-17, 2011 Outline 1)Introduction 2)Deformation.
Orbits, shapes and currents S. Frauendorf Department of Physics University of Notre Dame.
NSDD Workshop, Trieste, February 2006 Nuclear Structure (II) Collective models P. Van Isacker, GANIL, France.
Orbits, shapes and currents S. Frauendorf Department of Physics University of Notre Dame.
The stability of triaxial superdeformed shape in odd-odd Lu isotopes Tu Ya.
5. Exotic modes of nuclear rotation Tilted Axis Cranking -TAC.
Shell Model based deformation analysis of light Cadmium isotopes T. Schmidt 1, A. Blazhev 1, K. Heyde 2, J. Jolie 1 1 Institut für Kernphysik, Universität.
4. The rotating mean field. The mean field concept A nucleon moves in the mean field generated by all nucleons. The mean field is a functional of the.
1 New formulation of the Interacting Boson Model and the structure of exotic nuclei 10 th International Spring Seminar on Nuclear Physics Vietri sul Mare,
Chirality of Nuclear Rotation S. Frauendorf Department of Physics University of Notre Dame, USA IKH, Forschungszentrum Rossendorf Dresden, Germany.
Collective Model. Nuclei Z N Character j Q obs. Q sp. Qobs/Qsp 17 O 8 9 doubly magic+1n 5/ K doubly magic -1p 3/
Makito Oi Senshu University, Tokyo. Study of “rotation” Apparent retrograde motion of Saturn in 2011 (Apr-July) … observation by MO Eudoxus Hipparcus.
原子核配对壳模型的相关研究 Yanan Luo( 罗延安 ), Lei Li( 李磊 ) School of Physics, Nankai University, Tianjin Yu Zhang( 张宇 ), Feng Pan( 潘峰 ) Department of Physics, Liaoning.
The Algebraic Approach 1.Introduction 2.The building blocks 3.Dynamical symmetries 4.Single nucleon description 5.Critical point symmetries 6.Symmetry.
Nuclear deformation in deep inelastic collisions of U + U.
How do nuclei rotate? 1. The molecular picture.
Spontaneous symmetry breaking and rotational bands S. Frauendorf Department of Physics University of Notre Dame.
Electromagnetic moments for isomeric states in nuclei far from stability in nuclei far from stability NIPNE Bucharest ↔ INFN LNL Legnaro 10 experiments.
ESNT Saclay February 2, Structure properties of even-even actinides at normal- and super-deformed shapes J.P. Delaroche, M. Girod, H. Goutte, J.
Symmetries and collective Nuclear excitations PRESENT AND FUTURE EXOTICS IN NUCLEAR PHYSICS In honor of Geirr Sletten at his 70 th birthday Stefan Frauendorf,
ShuangQuan Zhang School of Physics, Peking University Static chirality and chiral vibration of atomic nucleus in particle rotor model.
Collective properties of even-even nuclei – Miscellaneous topics Vibrators and rotors.
A close up of the spinning nucleus S. Frauendorf Department of Physics University of Notre Dame, USA IKH, Forschungszentrum Rossendorf Dresden, Germany.
Some (more) High(ish)-Spin Nuclear Structure Paddy Regan Department of Physics Univesity of Surrey Guildford, UK Lecture 2 Low-energy.
Left-handed Nuclei S. Frauendorf Department of Physics University of Notre Dame, USA IKH, Forschungszentrum Rossendorf Dresden, Germany.
Symmetries of the Cranked Mean Field S. Frauendorf Department of Physics University of Notre Dame USA IKH, Forschungszentrum Rossendorf, Dresden Germany.
The i 13/2 Proton and j 15/2 Neutron Orbital and the SD Band in A~190 Region Xiao-tao He En-guang Zhao En-guang Zhao Institute of Theoretical Physics,
Triaxiality in nuclei: Theoretical aspects S. Frauendorf Department of Physics University of Notre Dame, USA IKH, Forschungszentrum Rossendorf Dresden,
Chiral Symmetry Breaking in Nuclei J.H. Hamilton 1, S.J. Zhu 1,2,3, Y.X. Luo 1,4,, A.V. Ramayya 1, J.O. Rasmussen 4, J.K. Hwang 1, S. Frauendorf 5, V.
Symmetries of the Cranked Mean Field S. Frauendorf Department of Physics University of Notre Dame USA IKH, Forschungszentrum Rossendorf, Dresden Germany.
Congresso del Dipartimento di Fisica Highlights in Physics –14 October 2005, Dipartimento di Fisica, Università di Milano Contribution to nuclear.
How do nuclei rotate? 3. The rotating mean field.
Chirality: From Symmetry to Dynamics S. Frauendorf Department of Physics University of Notre Dame USA Stockholm, April 20, 2015.
Nordita Workshop on chiral bands /04/2015 Multiple chiral bands associated with the same strongly asymmetric many- particle nucleon configuration.
超重原子核的结构 孙 扬 上海交通大学 合作者:清华大学 龙桂鲁, F. Al-Khudair 中国原子能研究院 陈永寿,高早春 济南,山东大学, 2008 年 9 月 20 日.
A microscopic investigation on magnetic and antimagnetic rotations in 110 Cd Jing Peng Beijing Normal University Collaborators:P.W.Zhao, Jie Meng, and.
IV. Nuclear Structure Topics to be covered include:
Content of the talk Exotic clustering in neutron-rich nuclei
Shape parameterization
Yu Zhang(张宇), Feng Pan(潘峰)
oblate prolate l=2 a20≠0, a2±1= a2±2= 0 Shape parameterization
20/30.
Ch. Stoyanov Two-Phonon Mixed-Symmetry States in the Domain N=52
Description of t-band in 182Os with HFB+GCM
Isomers and shape transitions in the n-rich A~190 region:
From instantons to spontaneous fission rates
a non-adiabatic microscopic description
Rotation and alignment of high-j orbitls in transfermium nuclei
High spin physics- achievements and perspectives
Nuclear shapes for the critical point
Nuclei at the Extremes of Spin: The Superdeformed Bands in 131,132Ce
20/30.
Shape-coexistence enhanced by multi-quasiparticle excitations in A~190 mass region 石跃 北京大学 导师:许甫荣教授
II. Spontaneous symmetry breaking
How do nuclei rotate? 1. The molecular picture.
Normal persistent currents and gross shell structure at high spin
Presentation transcript:

Nuclear Tidal Waves Daniel Almehed Stefan Frauendorf Yongquin Gu Yang Sun

Classical Quadrupole Surface Vibration

Tidal wave

Yrast line of 5D-harmonic oscillator In the rotating frame: small oscillations around E I qp. excitations Tidal waves

Anharmonic oscillator E(5) like I Anharmonic oscillator

I-1/2 rotor tidal wave vibrator

N= 92 90 88 86 84 No good vibrator!

Theoretical methods Fix the angular momentum or rotational frequency Find the static shape – use a mean field method Angular momentum projection: Projected shell model Cranking model: semiclassical treatment of angular momentum

Low-spin waves

F. Courminboeuf et al. PRC 63 (00) 014305

QQ model +cranking Energy minimum (self-consistency) at: harmonic

Cranking model B(E2,I->I-2)[(eb)^2] I exp calc tidal wave 0.09 0.07 AMR B(E2,I->I-2)[(eb)^2] I exp calc tidal wave 0.09 0.07 0.18 0.17 6 0.24 0.22 antimagnetic rotor 0.15 0.10 0.11 0.10 16 0.12 0.10 Experiment: M. Piiparinen et al. NPA565 (93) 671 F. Courminboeuf et al. PRC 63 (00) 014305 R. Clark et al. private communication

Projected shell model

Monopole Pairing+Quadrupole Pairing+QQ model Zero quasiparticle version: Two quasiparticle version: Diagonalize H in the basis Minimize lowest energy

Projected shell model B(E2,I->I-2)[(eb)^2] I exp calc tidal wave 0.09 0.07 0.18 0.13 0.24 0.16 antimagnetic rotor 0.15 0.14 0.11 0.15 16 0.12 0.16 AMR Tidal wave

Antimagnetic rotor

Geometrical model for an antimagnetic rotor

A. Simons et al. Phys. Rev. Lett. 91, 162501 (2003)

High-spin waves Combination of Angular momentum reorientation Triaxial deformation

yrast D. Cullen et. al

25 26 TAC 27 28 Line distance: 20keV 29 30

Line distance: 200 keV

Less favored vibrations Tidal wave Mixed with p-h excitations

s o t m K=0 0 8 14 21 24 i m t s o K=25 i (130 ns) P. Chowdhury et al NPA 484, 136 (1988) i m t s o

Tidal waves Yrast mode in soft nuclei at low and high spin Angular momentum generated by shape change at nearly constant angular velocity. Shape change: Axial, triaxial quadrupole, orientation, octupole … Rotating mean field gives a reliable microscopic description No new parameters Experimental rotational frequency well defined

Cranking model B(E2,I->I-2)[W.u.] I exp calc tidal wave AMR B(E2,I->I-2)[W.u.] I exp calc tidal wave 23.0 (15) 18 46 (6) 43 6 62 (20) 56 antimagnetic rotor 39 (2) 25 29 (3) 25 16 25 25

Projected shell model B(E2,I->I-2)[W.u.] I exp calc tidal wave 23.0 (15) 18 46 (6) 33 6 62 (20) 41 antimagnetic rotor 39 (2) 36 29 (3) 16 25 AMR Tidal wave