Presentation is loading. Please wait.

Presentation is loading. Please wait.

Description of t-band in 182Os with HFB+GCM

Similar presentations


Presentation on theme: "Description of t-band in 182Os with HFB+GCM"— Presentation transcript:

1 Description of t-band in 182Os with HFB+GCM
Yukio Hashimoto   Graduate School of Pure and Applied Sciences,   University of Tsukuba, Tsukuba, Ibaraki , Japan Takatoshi Horibata   Department of Software and Information Technology, Aomori University, Aomori, Aomori , Japan 1

2 Contents 1. Introduction 2. Three-dimensional Cranking
3. Tilted states and GCM 4. Concluding remarks 2

3 1. Introduction: general rotation mode
3

4 x x z y y (high K t-band) x x z z y y ω ω wobbling motion
tilted axis rotation (high K t-band) x x ω ω z z y y 4

5 wobbling band Odegard et al. Phys.Rev.Lett.86(2001), 5866 ω 5

6 P.M.Walker et al., Phys. Lett. B309(1993), 17-22.
g-band t-band ω 6 P.M.Walker et al., Phys. Lett. B309(1993),

7 182Os t-band (even component ) g-band 7 P.M.Walker et al., Phys. Lett. B309(1993),

8 theoretical frameworks
TAC    *S. Frauendorf, Nucl. Phys. A557, 259c(1993)    *S. Frauendorf, Nucl. Phys. A677, 115(2000).    *S. Frauendorf, Rev. Mod. Phys. 73, 463(2001). HFB+RPA     *M. Matsuzaki, Nucl. Phys. A509, 269(1990).     *Y. R. Shimizu and M. Matsuzaki, Nucl. Phys. A588, 559(1996).     *M. Matsuzaki, Y. R. Shimizu and K. Matsuyanagi,      Phys. Rev. C65, (R)(2002).      Phys. Rev. C69, (2004) HFB+GCM     *A. K. Kerman and N. Onishi, Nucl. Phys. A361, 179(1981).     *N. Onishi, Nucl. Phys. A456, 279(1986).     *T. Horibata and N. Onishi, Nucl. Phys. A596, 251(1996).     *T. Horibata, M. Oi, N. Onishi and A. Ansari,      Nucl. Phys. A646, 277(1999); A651, 435(1999).     *Y. Hashimoto and T. Horibata, Phys. Rev. C74, (2006)     *Y. Hashimoto and T. Horibata, EPJ A42, 571(2009). 8

9 2. Three-dimensional cranked HFB
A.K.Kerman and N.Onishi, Nucl.Phys.A361(1981),179 9

10 Constraints for HFB calculation
ψ x x z y y 10

11 Starting points of tilted wave functions
ω 11

12 Energy vs tilt angle 18 J = 18 ψ x ψ z TAR y y 12

13 j // ω ω 13

14 TAR states and K=8 band TAR K ~ const. tilt angle (degree) 14
30 * sin(15°) = 7.8 28 * sin(16°) = 7.7 26 * sin(17°) = 7.6 TAR 24 * sin(18°) = 7.6 22 * sin(20°) = 7.5 18 * sin(24°) = 7.3 tilt angle (degree) 14

15 TAR states ( K=8 band) angular momentum J 15

16 t-band 3. Tilted states and GCM odd even g-band 16
P.M.Walker et al., Phys. Lett. B309, 17-22(1993). 16

17 s-branches 28 26 24 ψ 22 ψ 17

18 Energy splitting in tunneling effect
ーΨ V D D, V smaller ΔE larger 18

19 V odd t-band even g-band 19
P.M.Walker et al., Phys. Lett. B309(1993), 19

20 ∫ Energy splitting in GCM wave function
generator coordinate a : tilt angle ψ wave function HFB solution at a Cf. T.Horibata et al., Nucl.Phys.A646(1999), 277. M.Oi et al., Phys. Lett. B418(1998), 1.  Phys. Lett. B525(2002), 255. 20

21 GCM amplitudes (J = 24,26,28) (ΔE= 93 keV) ΔE=252 keV ΔE=130 keV 21

22 4. Concluding Remarks   1. We have microscopically calculated three-dimensional rotation.   2. The TAR states are expected to be the members of   a band with K = 8 (t-band).     experimental results by Walker’s group.   3. GCM calculations (refinement) are in progress. 22


Download ppt "Description of t-band in 182Os with HFB+GCM"

Similar presentations


Ads by Google