Unit 5: Geometric and Algebraic Connections

Slides:



Advertisements
Similar presentations
Proving the Distance Formula
Advertisements

4.4 – Prove Triangles Congruent by SAS and HL Consider a relationship involving two sides, and the angle they form, their included angle. Any time you.
4.4 – Prove Triangles Congruent by SAS and HL Consider a relationship involving two sides, and the angle they form, their included angle. Any time you.
Introduction It is not uncommon for people to think of geometric figures, such as triangles and quadrilaterals, to be separate from algebra; however, we.
The Distance Formula The distance formula is used to find the Length of the segment.
Finding Distance by using the Pythagorean Theorem
EXAMPLE 4 SOLUTION Method 1: Use a Pythagorean triple. A common Pythagorean triple is 5, 12, 13. Notice that if you multiply the lengths of the legs of.
EXAMPLE 4 Find the length of a hypotenuse using two methods SOLUTION Find the length of the hypotenuse of the right triangle. Method 1: Use a Pythagorean.
The Pythagorean Theorem. The Right Triangle A right triangle is a triangle that contains one right angle. A right angle is 90 o Right Angle.
The Pythagorean Theorem x z y. For this proof we must draw ANY right Triangle: Label the Legs “a” and “b” and the hypotenuse “c” a b c.
EXAMPLE 1 Find the length of a hypotenuse SOLUTION Find the length of the hypotenuse of the right triangle. (hypotenuse) 2 = (leg) 2 + (leg) 2 Pythagorean.
EXAMPLE 1 Find the length of a hypotenuse SOLUTION Find the length of the hypotenuse of the right triangle. (hypotenuse) 2 = (leg) 2 + (leg) 2 Pythagorean.
4.4: THE PYTHAGOREAN THEOREM AND DISTANCE FORMULA
Radicals: Application and Problem Solving § 9.6. Angel, Elementary Algebra, 7ed 2 Pythagorean Theorem Revisited The square of the hypotenuse of a right.
Quadrilaterals in the Coordinate Plane I can find the slope and distance between two points I can use the properties of quadrilaterals to prove that a.
Pythagorean Theorem Use the Pythagorean Theorem to find the missing length of the right triangle. 1.
Section 11.6 Pythagorean Theorem. Pythagorean Theorem: In any right triangle, the square of the length of the hypotenuse equals the sum of the squares.
DALTON DICKSON MRS. BISHOP 5 TH PERIOD How to Use Pythagorean Theorem.
Triangles and Lines – Special Right Triangles There are two special right triangles : 30 – 60 – 90 degree right triangle 45 – 45 – 90 degree right triangle.
Section 1.3 Segments & Their Measures 1/14. Geometric Vocabulary Postulate : Rules that are accepted without proof. Axiom : Synonym for postulate. Theorem.
Warm-up Write the following formulas 1.Distance 2.Midpoint What is the Pythagorean Theorem?
Section 5.1 Midsegment Theorem and Coordinate Proof.
Pythagorean Theorem What is it and how does it work? a 2 + b 2 = c 2.
4.7 – Square Roots and The Pythagorean Theorem Day 2.
Chapter 9 Review Square RootsTriangles The Pythagorean Theorem Real Numbers Distance and Midpoint Formulas
4.4 Pythagorean Theorem and the Distance Formula Textbook pg 192.
1.7: Midpoint and Distance in the Coordinate Plane Part II.
The Pythagorean Theorem Only works for right triangles.
4.5 – Prove Triangles Congruent by ASA and AAS In a polygon, the side connecting the vertices of two angles is the included side. Given two angle measures.
Algebra 1 Predicting Patterns & Examining Experiments Unit 5: Changing on a Plane Section 2: Get to the Point.
10-1 The Pythagorean Theorem. LEGS Hypotenuse Problem 1: Finding the Length of a Hypotenuse The tiles shown below are squares with 6-in. sides. What.
Slope Formula. P1: ( -4, -5) P1: ( x 1, y 1 ) X 1 = -4, y 1 = -5 P2:( 4, 2) P2: (x 2, y 2 ) X 2 = 4, y 2 = 2 ( -4, -5) & ( 4,2)
Using the Distance Formula in Coordinate Geometry Proofs.
Unit 6: Connecting Algebra and Geometry through Coordinates Proving Coordinates of Rectangles and Squares.
Midpoint and distance formulas
Beat the Computer Drill Equation of Circle
The information is not on the reference sheet. Equation of the circle
The Distance and Midpoint Formulas
Midpoint and Distance in the Coordinate Plane
Right Triangle The sides that form the right angle are called the legs. The side opposite the right angle is called the hypotenuse.
8-2 Special Right triangles
Continuation of MVP 8.3 PROVE IT!
Lesson 4.7 Objective: To learn how to prove triangles are congruent and general statements using Coordinate Proofs.
Midpoint And Distance in the Coordinate Plane
Unit 5 Lesson 4.7 Triangles and Coordinate Proofs
Section 1.1 – Interval Notation
Introduction It is not uncommon for people to think of geometric figures, such as triangles and quadrilaterals, to be separate from algebra; however, we.
a2 + b2 = c2 Pythagorean Theorem c c b b a a
Algebra 1 – The Distance Formula
4.3 The Rectangle, Square and Rhombus The Rectangle
6-3 The Pythagorean Theorem Pythagorean Theorem.
PROVING THE PYTHAGOREAN THEOREM
Chapter 1: Lesson 1.1 Rectangular Coordinates
Math Humor Q: What keeps a square from moving?.
5.7: THE PYTHAGOREAN THEOREM (REVIEW) AND DISTANCE FORMULA
6-3 Warm Up Problem of the Day Lesson Presentation
4.3 The Rectangle, Square and Rhombus The Rectangle
PROVING A TRIANGLE IS AN ISOSCELES TRIANGLE
PROVING A TRIANGLE IS AN ISOSCELES TRIANGLE
Pythagorean Theorem What is it and how does it work? a2 + b2 = c2.
If a triangle is a RIGHT TRIANGLE, then a2 + b2 = c2.
Unit 5: Geometric and Algebraic Connections
Unit 1 Test Review.
1.7 Midpoint and Distance in the Coordinate Plane
Using Coordinates to Prove Geometric Theorems with Slope and Distance
Using Coordinate algebra, definitions, and properties
10-1 The Pythagorean Theorem
Triangle Relationships
1-6: Midpoint and Distance
Presentation transcript:

Unit 5: Geometric and Algebraic Connections 5.2 Coordinate Proofs

Pythagorean Theorem hypotenuse Distance Formula difference difference Square root difference difference

= 𝟗+𝟏 = 𝟏𝟎 = 𝟗𝟎𝟎+𝟏𝟔𝟎𝟎 =𝟓𝟎 ( −𝟐−𝟏) 𝟐 +( 𝟑−𝟒) 𝟐 = ( −𝟑) 𝟐 +(−𝟏 ) 𝟐 = ( −𝟑) 𝟐 +(−𝟏 ) 𝟐 = 𝟗+𝟏 = 𝟏𝟎 ( 𝟒𝟎−𝟏𝟎) 𝟐 +(𝟒𝟓−𝟓 ) 𝟐 = ( 𝟑𝟎) 𝟐 +(𝟒𝟎 ) 𝟐 = 𝟗𝟎𝟎+𝟏𝟔𝟎𝟎 =𝟓𝟎

Use Distance Formula to prove congruent length 𝑩𝑪 = (𝟓−𝟏 ) 𝟐 +(𝟔− 𝟑) 𝟐 = ( 𝟑) 𝟐 +(𝟒 ) 𝟐 =𝟓 𝑨𝑪 = ( 𝟏−𝟒) 𝟐 +( 𝟑−(−𝟏)) 𝟐 = ( −𝟑) 𝟐 +(𝟒 ) 𝟐 =𝟓 Use Slope Formula to prove a right triangle 𝑩𝑪 = 𝟔−𝟑 𝟓−𝟏 𝑨𝑪 = −𝟏−𝟑 𝟒−𝟏 = 𝟑 𝟒 =− 𝟒 𝟑

Use Slope Formula to prove a right triangle 𝑩𝑪 = −𝟏−𝟑 𝟐−𝟐 𝑨𝑪 = −𝟏−(−𝟏) 𝟐−(−𝟑) = −𝟒 𝟎 = 𝟎 𝟓 Undefined

𝑨𝑩 = (𝟐−𝟏 ) 𝟐 +(𝟓− 𝟐) 𝟐 = 𝟏𝟎 𝑪𝑫 = ( 𝟒−𝟓) 𝟐 +(𝟒−𝟕 ) 𝟐 = 𝟏𝟎 Use Distance Formula to prove congruent length 𝑨𝑩 = (𝟐−𝟏 ) 𝟐 +(𝟓− 𝟐) 𝟐 = 𝟏𝟎 𝑪𝑫 = ( 𝟒−𝟓) 𝟐 +(𝟒−𝟕 ) 𝟐 = 𝟏𝟎 𝑩𝑪 = (𝟓−𝟐 ) 𝟐 +(𝟕−𝟓 ) 𝟐 = 𝟏𝟑 𝑨𝑫 = ( 𝟒−𝟏) 𝟐 +( 𝟒−𝟐) 𝟐 = 𝟏𝟑

𝑨𝑩 = (−𝟐−(−𝟑) ) 𝟐 +(𝟔− 𝟐) 𝟐 = 𝟏𝟕 𝑪𝑫 = ( 𝟏−𝟐) 𝟐 +(𝟑−𝟕 ) 𝟐 = 𝟏𝟕 𝑩𝑪 = (𝟐−(−𝟐) ) 𝟐 +(𝟕−𝟔 ) 𝟐 = 𝟏𝟕 𝑨𝑫 = ( 𝟏−(−𝟑)) 𝟐 +( 𝟑−𝟐) 𝟐 = 𝟏𝟕

𝑨𝑩 = 𝟐−𝟎 𝟑−(−𝟑) 𝑨𝑫 = −𝟑−𝟎 −𝟐−(−𝟑) 𝑨𝑩 = (𝟑−(−𝟑) ) 𝟐 +(𝟐−𝟎 ) 𝟐 Use Slope Formula to prove a right triangle 𝑨𝑩 = 𝟐−𝟎 𝟑−(−𝟑) = 𝟏 𝟑 𝑨𝑫 = −𝟑−𝟎 −𝟐−(−𝟑) =−𝟑 Use Distance Formula to prove congruent length 𝑨𝑩 = (𝟑−(−𝟑) ) 𝟐 +(𝟐−𝟎 ) 𝟐 = ( 𝟔) 𝟐 +(𝟐 ) 𝟐 = 𝟒𝟎 𝑪𝑫 = (−𝟐−𝟒 ) 𝟐 +(−𝟑−(−𝟏) ) 𝟐 = ( −𝟔) 𝟐 +(−𝟐 ) 𝟐 = 𝟒𝟎

𝑨𝑩 = 𝟒−𝟎 𝟎−(−𝟑) 𝑨𝑫 = −𝟑−𝟎 −𝟏−(−𝟑) 𝑨𝑩 = (𝟎−(−𝟑) ) 𝟐 +(𝟒−𝟎 ) 𝟐 Use Slope Formula to prove a right triangle 𝑨𝑩 = 𝟒−𝟎 𝟎−(−𝟑) = 𝟒 𝟑 𝑨𝑫 = −𝟑−𝟎 −𝟏−(−𝟑) =− 𝟑 𝟒 Use Distance Formula to prove congruent length 𝑨𝑩 = (𝟎−(−𝟑) ) 𝟐 +(𝟒−𝟎 ) 𝟐 = ( 𝟑) 𝟐 +(𝟒 ) 𝟐 =𝟓 𝑩𝑪 = (𝟒−𝟎 ) 𝟐 +(𝟏−𝟒 ) 𝟐 = ( 𝟒) 𝟐 +(−𝟑 ) 𝟐 =𝟓