MATH-321 In One Slide MATH-321 & MATLAB Command.

Slides:



Advertisements
Similar presentations
Numerical Solution of Linear Equations
Advertisements

Chapter 6: Roots: Open Methods
Part 2 Chapter 6 Roots: Open Methods
Asymptotic error expansion Example 1: Numerical differentiation –Truncation error via Taylor expansion.
Lecture 18 - Numerical Differentiation
Chapter 4 Roots of Equations
ECIV 301 Programming & Graphics Numerical Methods for Engineers Lecture 30 Numerical Integration & Differentiation.
Curve-Fitting Polynomial Interpolation
ECIV 301 Programming & Graphics Numerical Methods for Engineers Lecture 20 Solution of Linear System of Equations - Iterative Methods.
ECIV 301 Programming & Graphics Numerical Methods for Engineers Lecture 19 Solution of Linear System of Equations - Iterative Methods.
CVEN Exam 1 Review. Matlab Basic commands and syntax Basic commands and syntax Creation of functions and programs Creation of functions and programs.
Revision.
CVEN Exam 1 Review. Matlab.m files Matlab.m files Programming: FOR, WHILE, IF and FUNCTION Programming: FOR, WHILE, IF and FUNCTION Taylor Series.
Special Matrices and Gauss-Siedel
ECIV 301 Programming & Graphics Numerical Methods for Engineers REVIEW III.
CVEN Exam 1 Review. Matlab Basic commands and syntax Basic commands and syntax Creation of functions and programs Creation of functions and programs.
ECIV 301 Programming & Graphics Numerical Methods for Engineers REVIEW II.
CISE-301: Numerical Methods Topic 1: Introduction to Numerical Methods and Taylor Series Lectures 1-4: KFUPM.
Numerical Solution of Ordinary Differential Equation
-S.SIVARAJA Dept of MATHEMATICS.  N-NUMERICAL  M-METHODS EASY TO LEARN & EASY TO SCORE.
1 Chapter 5 Numerical Integration. 2 A Review of the Definite Integral.
1 Chapter 7 NUMERICAL INTEGRATION. 2 PRELIMINARIES We use numerical integration when the function f(x) may not be integrable in closed form or even in.
CMPS1371 Introduction to Computing for Engineers NUMERICAL METHODS.
NUMERICAL METHODS IN ELECTRICAL ENGINEERING
9/7/ Gauss-Siedel Method Chemical Engineering Majors Authors: Autar Kaw Transforming.
MA2213 Lecture 4 Numerical Integration. Introduction Definition is the limit of Riemann sums I(f)
CISE-301: Numerical Methods Topic 1: Introduction to Numerical Methods and Taylor Series Lectures 1-4: KFUPM CISE301_Topic1.
CISE301_Topic11 CISE-301: Numerical Methods Topic 1: Introduction to Numerical Methods and Taylor Series Lectures 1-4:
EE 3561_Unit_1(c)Al-Dhaifallah EE 3561 : - Computational Methods in Electrical Engineering Unit 1: Introduction to Computational Methods and Taylor.
Numerical Methods Applications of Loops: The power of MATLAB Mathematics + Coding 1.
Lecture 22 - Exam 2 Review CVEN 302 July 29, 2002.
Review Taylor Series and Error Analysis Roots of Equations
Department of Mechanical Engineering, LSU Session IV MATLAB Tutorials Session IV Mathematical Applications using MATLAB Rajeev Madazhy
Copyright © 2006 The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 ~ Roots of Equations ~ Open Methods Chapter 6 Credit:
Quadrature rules 1Michael Sokolov / Numerical Methods for Chemical Engineers / Numerical Quadrature Michael Sokolov ETH Zurich, Institut für Chemie- und.
CHAPTER 3 NUMERICAL METHODS
Lecture 16 - Approximation Methods CVEN 302 July 15, 2002.
MECN 3500 Inter - Bayamon Lecture 6 Numerical Methods for Engineering MECN 3500 Professor: Dr. Omar E. Meza Castillo
BE207 Numerical Analysis using Matlab Lecturer DR Abdullah Awad Faculty of Engineering.
Lecture 6 - Single Variable Problems & Systems of Equations CVEN 302 June 14, 2002.
Sec 21: Generalizations of the Euler Method Consider a differential equation n = 10 estimate x = 0.5 n = 10 estimate x =50 Initial Value Problem Euler.
MA2213 Lecture 12 REVIEW. 1.1 on page Compute Compute quadratic Taylor polynomials for 12. Compute where g is the function in problems 11 and 12.
Assignment 1: due 1/19/16 Estimate all of the zero of x3-x2-2x+1 graphically. Write a MatLab code for Newton’s method. Use your code to refine the graphical.
Answers for Review Questions for Lectures 1-4. Review Lectures 1-4 Problems Question 2. Derive a closed form for the estimate of the solution of the equation.
1 Approximating functions, polynomial interpolation (Lagrange and Newton’s divided differences) formulas, error approximations.
CHAPTER 3 NUMERICAL METHODS
NUMERICAL DIFFERENTIATION Forward Difference Formula
Chapter 7 Numerical Differentiation and Integration
Numerical Analysis Lecture 25.
Gauss-Siedel Method.
Numerical Analysis Lecture12.
Advanced Numerical Methods (S. A. Sahu) Code: AMC 51151
Iterative Methods Good for sparse matrices Jacobi Iteration
Autar Kaw Benjamin Rigsby
MATH 2140 Numerical Methods
Numerical Analysis Lecture 45.
ME 123 Computer Applications I Lecture 24: Character Strings 4/18/03
POLYNOMIAL INTERPOLATION
Numerical Integration:
Numerical Analysis Lecture 26.
Discrete Least Squares Approximation
SKTN 2393 Numerical Methods for Nuclear Engineers
Assignment 1: due 1/16/19 Estimate all of the zero of x3-x2-2x+1 graphically. Write a MatLab code for Newton’s method. Use your code to refine the graphical.
Some Comments on Root finding
Assignment 1: due 1/17/19 Estimate all of the zero of x3-x2-2x+1 graphically. Write a MatLab code for Newton’s method. Use your code to refine the graphical.
CPE 332 Computer Engineering Mathematics II
Fixed- Point Iteration
ME 123 Computer Applications I Lecture 25: MATLAB Overview 4/28/03
Numerical Analysis Lecture11.
CISE-301: Numerical Methods Topic 1: Introduction to Numerical Methods and Taylor Series Lectures 1-4: KFUPM CISE301_Topic1.
Presentation transcript:

MATH-321 In One Slide MATH-321 & MATLAB Command

Final Exam From Coordinator 1. Formulas for the error bounds and RK methods will be provided if needed. 2. The exam consists of written questions on the new material and MCQs on the old material.  3. Two questions about Matlab .

Formula Error Equation Some Comments on Root finding Formula Error Equation Newton’s 𝑝 𝑛 = 𝑝 𝑛−1 − 𝑓( 𝑝 𝑛−1 ) 𝑓′( 𝑝 𝑛−1 ) Secant 𝑝 𝑛 = 𝑝 𝑛−1 − 𝑓( 𝑝 𝑛−1 )( 𝑝 𝑛−1 − 𝑝 𝑛−2 ) 𝑓 𝑝 𝑛−1 −𝑓( 𝑝 𝑛−2 ) 𝑝 𝑛 = 𝑎 𝑛−1 + 𝑏 𝑛−1 2 𝑝 ∗ − 𝑝 𝑛 ≤ 𝑏−𝑎 2 𝑛 Bisection Fixed-point 𝑝 𝑛 =𝑓( 𝑝 𝑛−1 ) 𝑔′(𝑥) ≤𝑘 ∀𝑥

Sec:4.1 Numerical Differentiation Backward-difference Formula 𝑓 ′ 𝒙 𝟎 = 𝑓 𝒙 𝟎 −𝑓( 𝒙 𝟎 −𝒉) ℎ + ℎ 2 𝑓′′(𝜉) Forward-difference Formula 𝑓 ′ 𝒙 𝟎 = 𝑓 𝒙 𝟎 +𝒉 −𝑓( 𝒙 𝟎 ) ℎ − ℎ 2 𝑓′′(𝜉) where 𝜉 between 𝒙 𝟎 and 𝒙 𝟎 −𝐡 𝒙 𝟎 −𝐡 𝒙 𝟎 where 𝜉 between 𝒙 𝟎 and 𝒙 𝟎 +𝐡 𝒙 𝟎 𝒙 𝟎 +𝐡 Central Difference for f’(x) 𝒙 𝟎 −𝐡 𝒙 𝟎 𝒙 𝟎 +𝐡 Central Difference for f’’(x) 𝒙 𝟎 −𝐡 𝒙 𝟎 𝒙 𝟎 +𝐡

Sec:4.3 Elements of Numerical Integration The Trapezoidal Rule 𝑎 𝑏 𝑓 𝑥 𝑑𝑥 = 𝒉 𝟐 𝒇 𝒙 𝟎 +𝒇 𝒙 𝟏 − 𝒉 𝟑 𝟏𝟐 𝒇 ′′ 𝝃 ℎ=𝑏−𝑎 Simpson’s Rule 𝑎 𝑏 𝑓 𝑥 𝑑𝑥 = 𝒉 𝟑 𝒇 𝒙 𝟎 +𝟒𝒇 𝒙 𝟏 +𝒇( 𝒙 𝟐 ) − 𝒉 𝟓 𝟗𝟎 𝒇 𝟒 𝝃 ∗ ℎ=(𝑏−𝑎)/2 The midpoint Rule 𝑎 𝑏 𝑥 0 𝒚=𝒇(𝒙) 𝑎 𝑏 𝑓 𝑥 𝑑𝑥 =(𝒃−𝒂)𝒇 𝒂+𝒃 𝟐 + 𝒉 𝟑 𝟑 𝒇 ′′ 𝝃 𝑥 0 =(𝑏+𝑎)/2

Sec:5.2 EULER’S METHOD Euler’s Method 𝑤 𝑖+1 = 𝑤 𝑖 +ℎ𝑓 𝑡 𝑖 , 𝑤 𝑖 𝑤 0 =𝛼

Sec:3.3 Divided Differences Example 𝒙 𝒊 𝒇(𝒙 𝒊 ) 1 3 2 6 3 19 5 99 Calculate f (4) using Newton’s interpolating polynomials of order 3. Given the data 𝒙 𝒊 𝒇[𝒙 𝒊 ] First Second Third 1 3 2 6 19 5 99 𝟑 𝟓 𝟏𝟑 𝟏 𝟗 𝟒𝟎 𝒑 𝟑 𝒙 =𝟑+𝟑 𝒙−𝟏 +𝟓 𝒙−𝟏 𝒙−𝟐 +𝟏(𝒙−𝟏)(𝒙−𝟐)(𝒙−𝟑) The coefficients of the Newton forward divided-difference form of the interpolating polynomial are along the diagonal in the table. 𝒑 𝟑 𝟒 =𝟒𝟖

MATH-321 and MATLAB Command Root-finding (Ch.2) Numerical Differentiation Initial Value Prob (IVP) (Ch.4) (Ch.5) The Bisection Method Euler Mod. Euler Huen’s RK4  Forward Difference Ode45, ode23, ode113, ode15s, ode23s, ode23t, ode23tb, ode15i, Fixed- Point Iteration Newton's Method Backward Difference Secant Method Central Difference y’ Central Difference y’’ f=@(x) x^3+x+1; fzero(f,1) Linear System (Ch.6,7) h=0.01; x=0:h:pi/2; diff(sin(x))/h \ linsolve pcg minres Gmres lu Gaussian elim Jacobi Gauss-Seidel LU fact  roots([1 0 1 1]) Numerical integration (Ch.4) Interpolation (Ch.3) Midpoint Trapozidal Simpson’s Composite  Lagrange Poly integral, trapz, quad Divided Differences Least Squares (Ch.8) Cubic Spline \ linsolve spline , interp1 , csape f=@(x) x.^3+x+1; quad(f,0,1) Finite-Difference Methods integral(f,0,1) (Ch.11)

After EXAM-2

Sec:11.3 Finite-Difference Methods for Linear Problems cq19 Final171 𝒚(𝒙 𝒊+𝟏 )−𝟐𝒚( 𝒙 𝒊 )+ 𝒚(𝒙 𝒊−𝟏 ) 𝒉 𝟐 +𝟑 𝒚(𝒙 𝒊+𝟏 )− 𝒚(𝒙 𝒊−𝟏 ) 𝟐𝒉 2 𝒚 (𝒙 𝒊 ) ≈ − 2 𝒙 𝒊 +𝟑 𝒘 𝒊+𝟏 −𝟐 𝒘 𝒊 + 𝒘 𝒊−𝟏 𝒉 𝟐 +𝟑 𝒘 𝒊+𝟏 − 𝒘 𝒊−𝟏 𝟐𝒉 −𝟐 𝒘 𝒊 =𝟐 𝒙 𝒊 +𝟑

Sec:7.3 The Jacobi and Gauss-Siedel Iterative Techniques Example Keep the diagonal on the left hand side Use GS to find the second iteraton GS Method Change the coeff of LHS to be one by division 𝒙 (𝟎) =(𝟎,𝟎,𝟎,𝟎 ) 𝑻 find 𝒙 (𝟐)

Sec:7.3 The Jacobi and Gauss-Siedel Iterative Techniques Convergence Criterion for the Gauss-Seidel Method Definition A is strictly diagonally dominant That is, the diagonal coefficient in each of the equations must be larger than the sum of the absolute values of the other coefficients in the equation 𝑎 𝑖𝑖 > 𝑗=1 𝑗≠𝑖 𝑛 𝑎 𝑖𝑗 , 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 Example Example1 Use GS to find the second iteraton 10 -1 2 0 -1 11 -1 3 2 -1 10 -1 0 3 -1 -8 THM: A is strictly diagonally dominant

𝑨=𝑳𝑼 𝑳= 𝑼= Sec:6.5 Matrix Factorization LU factorization Find -2R1+R2R2 -3R2+R3R3 -4R2+R4R4 -4R1+R3R3 -3R1+R4R4 -R3+R4R4 𝑳= 𝑼= Solve 𝑳𝑼𝒙 =[𝟏,𝟏,𝟏,𝟏] 𝑻 𝑨𝒙=𝒃 1 𝑳𝒚=𝒃 𝑳𝑼𝒙=𝒃 2 𝑼𝒙=𝒚

𝑼= Sec:6.1 Linear systems of Equations 𝑷= (Pivoting) 𝑷𝑨= -2R1+R2R2 permutation matrix 𝑷= -(4/3)R2+R4R4 𝑷𝑨= (2/3)R3+R4R4 𝑼=

3 Cases: Sec:6.1 Linear systems of Equations unique solution infinite number of solutions no solution

Sec:8.1 Discrete Least Squares Approximation Fit the data in Table with the discrete least squares polynomial of degree at most 2. Derivation for linear or polynomial of degree two 𝒑 𝟐 (𝒙) = 𝒂 𝟎 + 𝒂 𝟏 𝒙+ 𝒂 𝟐 𝒙 𝟐 Matrix Form = 𝒊=𝟏 𝒎 𝒚 𝒊 − 𝒂 𝟎 − 𝒂 𝟏 𝒙 𝒊 𝟐 1.0 1.284 1.6487 2.117 2.7183 = 1 0 0 2 1 0.25 0.25 2 1 0.5 0.5 2 1 0.75 0.75 2 1 1 1 2 𝒂 𝟎 𝒂 𝟏 𝒂 𝟐 𝑬 𝒂 𝟎 , 𝒂 𝟏 𝝏𝑬 𝝏 𝒂 𝟎 =𝟎 𝝏𝑬 𝝏 𝒂 𝟏 =𝟎 8.7680 30.5736 122.8038 5 15 55 15 55 225 55 225 979 𝒂 𝟎 𝒂 𝟏 𝒂 𝟐 = 𝑚 𝒙 𝒊 𝑥 𝑖 2 𝒙 𝒊 𝑥 𝑖 2 𝑥 𝑖 3 𝑥 𝑖 2 𝑥 𝑖 3 𝑥 𝑖 4 𝒂 𝟎 𝒂 𝟏 𝒂 𝟐 = 𝒚 𝒊 𝒙 𝒊 𝒚 𝒊 𝑥 𝑖 2 𝒚 𝒊

EXAM-1 and EXAM-2

first divided difference second divided difference Sec:3.3 Divided Differences Example 𝒙 𝑓[𝑥] 𝑥 0 =1 𝑓[ 𝑥 0 ] =1 𝑥 1 =2 𝑓[ 𝑥 1 ] =8 𝑥 2 =4 𝑓 𝑥 2 = 14 Fit a second-order polynomial to the three points 𝒙 𝑓[𝑥] first divided difference second divided difference 𝑥 0 =1 𝑓[ 𝑥 0 ] =1 𝑓 𝑥 0 , 𝑥 1 = 8−1 2−1 =7 𝑥 1 =2 𝑓[ 𝑥 1 ] =8 𝑓 𝑥 1 , 𝑥 2 = 14−8 4−2 =3 𝑥 2 =4 𝑓 𝑥 2 = 14 = 𝒇 𝒙 𝟏 , 𝒙 𝟐 −𝒇 𝒙 𝟎 , 𝒙 𝟏 𝒙 𝟐 − 𝒙 𝟎 = 𝟑−𝟕 𝟒−𝟏 =− 𝟒 𝟑 𝒇 𝒙 𝟎 , 𝒙 𝟏 , 𝒙 𝟐 𝑝 2 𝑥 =𝒇[ 𝒙 𝟎 ]+𝒇[ 𝒙 𝟎 , 𝒙 𝟏 ] 𝒙− 𝑥 0 +𝒇[ 𝒙 𝟎 , 𝒙 𝟏 , 𝒙 𝟐 ] 𝒙− 𝑥 0 𝒙− 𝑥 1 𝑝 2 𝑥 =𝟏+𝟕 𝒙−1 − 𝟒 𝟑 𝒙−1 𝒙−2

Sec:5.2 The Bisection Method Example: Use Bisection method to find the root of the function 𝑓 (𝑥) = 10 𝑥 6 −149 𝑥 5 +10𝑥−149 10( 𝑥 4 +1) in [12, 16] 12 16 Change of sign -34.8 17.6 𝒙 𝟏 = True root: 𝑥 𝑟 ∗ =14.9 12 14 Change of sign 16 Iter1 𝒏 𝒙 𝒏 -34.8 -12.6 17.6 1 14.0000000000 2 15.0000000000 3 14.5000000000 4 14.7500000000 5 14.8750000000 6 14.9375000000 7 14.9062500000 8 14.8906250000 9 14.8984375000 10 14.9023437500 11 14.9003906250 12 14.8994140625 13 14.8999023438 14 14.9001464844 15 14.9000244141 16 14.8999633789 𝒙 𝟐 = 14 15 16 Iter2 Change of sign -12.6 1.5 17.6 𝒙 𝟑 = Change of sign 14.5 14 15 Iter3 -5.8 1.5 -12.6

Sec:6.1 Fixed- Point Iteration Step 1 Example1 Use simple fixed-point iteration to locate the root of 𝒇 𝒙 = 𝒆 −𝒙 −𝒙 rearranging the function   𝒙= 𝒆 −𝒙   𝒙=𝒈(𝒙)  𝒙 𝒏 Step 2 𝒏 𝒙 𝒊+𝟏 =𝒈( 𝒙 𝒊 ) 1 0.0000000000000 2 1.0000000000000 3 0.3678794411714 4 0.6922006275553 5 0.5004735005636 6 0.6062435350856 7 0.5453957859750 8 0.5796123355034 9 0.5601154613611 10 0.5711431150802 11 0.5648793473910 12 0.5684287250291 𝒙 𝒊+𝟏 = 𝒆 − 𝒙 𝒊   Starting with an initial guess of x0 = 0 𝒙 𝟏 =𝒈 𝒙 𝟎 = 𝒆 −𝟎 =𝟏 𝒙 𝟐 =𝒈 𝒙 𝟏 = 𝒆 −𝟏 =0.367879 𝒙 𝟑 =𝒈 𝒙 𝟐 = 𝒆 −𝟎.𝟑𝟔𝟕𝟖𝟕𝟗 =0.692201 ⋮ ⋮ ⋮ ⋮ Thus, each iteration brings the estimate closer to the true value of the root: 0.56714329

Sec:2.3 Newton’s Method and Its Extensions Backward difference 𝑓 ′ 𝑥 𝑛 ≈ 𝑓 𝑥 𝑛 −𝑓( 𝑥 𝑛−1 ) 𝑥 𝑛 − 𝑥 𝑛−1 To approximate the roots of 𝑓 𝑥 =0 Given initial guess 𝑥 1 The Secant Method 𝑥 𝑛+1 = 𝑥 𝑛 − 𝑓( 𝑥 𝑛 ) 𝑓′( 𝑥 𝑛 ) 𝑥 𝑛+1 = 𝑥 𝑛 − 𝑓( 𝑥 𝑛 )( 𝑥 𝑛 − 𝑥 𝑛−1 ) 𝑓 𝑥 𝑛 −𝑓( 𝑥 𝑛−1 )

Sec:5.2 EULER’S METHOD 𝑡 𝑖 𝑤 𝑖 𝑦(𝑡 𝑖 ) Example 𝑤 𝑖+1 = 𝑤 𝑖 +ℎ 𝑤 𝑖 − 𝑡 𝑖 2 +1 𝑤 0 = 0.5 Use Euler’s method with h = 0.4 to approximate the solutions for the following initial-value problems 𝑤 1 = 𝑤 0 +ℎ 𝑤 0 − 𝑡 0 2 +1 =0.5+0.4 0.5−0+1 𝑦 ′ =𝑦− 𝑡 2 +1 0≤ 𝑡 ≤2, 𝑦(0) = 0.5 =1.1 →𝑦(0.4)≈1.1 𝑤 2 = 𝑤 1 +ℎ 𝑤 1 − 𝑡 1 2 +1 =1.1+0.4 1.1− 0.4 2 +1 𝒘 𝟎 𝒘 𝟏 𝒘 𝟐 𝒘 𝟑 𝒘 𝟒 𝒘 𝟓 =1.876 →𝑦(0.8)≈1.876 𝒕 𝟎 𝒕 𝟏 𝒕 𝟐 𝒕 𝟑 𝒕 𝟒 𝒕 𝟓 0.4 0.8 1.2 1.6 2 0.0 0.5000 0.5000 0.4 1.1000 1.2141 0.8 1.8760 2.1272 1.2 2.7704 3.1799 1.6 3.7026 4.2835 2.0 4.5596 5.3055 𝑡 𝑖 𝑤 𝑖 𝑦(𝑡 𝑖 ) Euler’s Method 𝑦 ′ =𝑓 𝑡,𝑦 𝑎≤ 𝑡 ≤𝑏, 𝑦(𝑎) =𝛼 𝑤 𝑖+1 = 𝑤 𝑖 +ℎ𝑓 𝑡 𝑖 , 𝑤 𝑖 𝑤 0 =𝛼

Sec:5.2 EULER’S METHOD 𝑡 𝑖 𝑤 𝑖 𝑦(𝑡 𝑖 ) Example Euler’s Method 𝑦 ′ =𝑦− 𝑡 2 +1 0≤ 𝑡 ≤4, 𝑦(0) = 0.5 Euler’s Method 𝑤 𝑖+1 = 𝑤 𝑖 +ℎ 𝑤 𝑖 − 𝑡 𝑖 2 +1 𝑤 0 = 0.5 𝑡 𝑖 𝑤 𝑖 𝑦(𝑡 𝑖 ) 𝒚(𝒕)= (𝒕+ 𝟏) 𝟐 − 𝟎.𝟓 𝒆 𝒕 𝑻𝒓𝒖𝒆 0.0 0.5000 0.5000 0.4 1.1000 1.2141 0.8 1.8760 2.1272 1.2 2.7704 3.1799 1.6 3.7026 4.2835 2.0 4.5596 5.3055 2.4 5.1834 6.0484 2.8 5.3528 6.2177 3.2 4.7579 5.3737 3.6 2.9651 2.8609 4.0 -0.6329 -2.2991 𝑬𝒖𝒍𝒆𝒓