Understanding Randomness

Slides:



Advertisements
Similar presentations
Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide
Advertisements

Copyright © 2010 Pearson Education, Inc. Slide A small town employs 34 salaried, nonunion employees. Each employee receives an annual salary increase.
Copyright © 2010, 2007, 2004 Pearson Education, Inc. Chapter 11 Understanding Randomness.
Copyright © 2010, 2007, 2004 Pearson Education, Inc. Chapter 14 From Randomness to Probability.
Copyright © 2006 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide
Copyright © 2006 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide
AP STATISTICS Simulation “Statistics means never having to say you're certain.”
Chapter 5 Understanding Randomness
3.6: Probabilities Through Simulations Objective: To simulate probabilities using random number tables and random number generators CHS Statistics.
Understanding Randomness
Chapter XI Rory Nimmons Venkat Reddy UnderstandingRandomnessUnderstandingRandomness.
Copyright © 2010, 2007, 2004 Pearson Education, Inc. Chapter 14 From Randomness to Probability.
Understanding Randomness
Chapter 11: understanding randomness (Simulations)
+ AP Statistics: Chapter 11 Pages Rohan Parikh Azhar Kassam Period 2.
Copyright © 2010 Pearson Education, Inc. Unit 3: Gathering Data Chapter 11 Understanding Randomness.
Excursions in Modern Mathematics, 7e: Copyright © 2010 Pearson Education, Inc. 15 Chances, Probabilities, and Odds 15.1Random Experiments and.
Chapter 11 Randomness. Randomness Random outcomes –Tossing coins –Rolling dice –Spinning spinners They must be fair.
1-1 Copyright © 2015, 2010, 2007 Pearson Education, Inc. Chapter 13, Slide 1 Chapter 13 From Randomness to Probability.
Slide 11-1 Copyright © 2004 Pearson Education, Inc.
1-1 Copyright © 2015, 2010, 2007 Pearson Education, Inc. Chapter 10, Slide 1 Chapter 10 Understanding Randomness.
Understanding Randomness Chapter 11. Why Be Random? What is it about chance outcomes being random that makes random selection seem fair? Two things: –
Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Chapter 11 Understanding Randomness.
Copyright © 2010, 2007, 2004 Pearson Education, Inc. Chapter 11 Understanding Randomness.
Copyright © 2010 Pearson Education, Inc. Chapter 14 From Randomness to Probability.
AP STATISTICS Objective: Understanding Randomness Do Now: Take out any completed contracts, personal profiles, as well as your written design study. HW:
Chapter 11 Understanding Randomness. What is Randomness? Some things that are random: Rolling dice Shuffling cards Lotteries Bingo Flipping a coin.
Slide Understanding Randomness.  What is it about chance outcomes being random that makes random selection seem fair? Two things:  Nobody can.
Copyright © 2006 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide
Copyright © 2010 Pearson Education, Inc. Unit 4 Chapter 14 From Randomness to Probability.
Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Chapter 14 From Randomness to Probability.
From Randomness to Probability Chapter 14. Dealing with Random Phenomena A random phenomenon is a situation in which we know what outcomes could happen,
Understanding Randomness.  Many phenomena in the world are random: ◦ Nobody can guess the outcome before it happens. ◦ When we want things to be fair,
Simulating Experiments Introduction to Random Variable.
Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide
Chapter 10 Understanding Randomness. Why Be Random? What is it about chance outcomes being random that makes random selection seem fair? Two things: –
1 Chapter 11 Understanding Randomness. 2 Why Be Random? What is it about chance outcomes being random that makes random selection seem fair? Two things:
1 Chapter 11 Understanding Randomness. 2 Why Random? What is it about chance outcomes being random that makes random selection seem fair? Two things:
Copyright © 2010, 2007, 2004 Pearson Education, Inc. Chapter 14 From Randomness to Probability.
Copyright © 2010 Pearson Education, Inc. Chapter 14 From Randomness to Probability.
Stats3 Day 1 Chapter 11- using random # table. Do Now Read Handout
Copyright © 2009 Pearson Education, Inc. Chapter 11 Understanding Randomness.
AP Statistics Understanding Randomness Chapter 11.
Statistics 11 Understanding Randomness. Example If you had a coin from someone, that they said ended up heads more often than tails, how would you test.
1 Copyright © 2014, 2012, 2009 Pearson Education, Inc. Chapter 9 Understanding Randomness.
Chapter 11 Understanding Randomness. What is the most important aspect of randomness? It must be fair. How is this possible? 1) Nobody can guess the outcome.
Lesson 10: Using Simulation to Estimate a Probability Simulation is a procedure that will allow you to answer questions about real problems by running.
6.1 The Idea of Probability
From Randomness to Probability
Dealing with Random Phenomena
Why Be Random? What is it about chance outcomes being random that makes random selection seem fair? Two things: Nobody can guess the outcome before it.
Understanding Randomness
From Randomness to Probability
Friday, October 7, 2016 Write a random number between 1 and 10 on a post- it note on your desk Warm-up Discuss with your group & make a list What games.
Monday, October 10, 2016 Warm-up Random Numbers Simulations
From Randomness to Probability
From Randomness to Probability
Understanding Randomness
Understanding Randomness
Understanding Randomness
CHAPTER 5 Probability: What Are the Chances?
Probability using Simulations
From Randomness to Probability
Understanding Randomness
Statistics and Probability-Part 5
From Randomness to Probability
Review of the Binomial Distribution
Understanding Randomness
Presentation transcript:

Understanding Randomness Chapter 11 Understanding Randomness Copyright © 2010 Pearson Education, Inc.

Why Be Random? What is it about chance outcomes being random that makes random selection seem fair? Two things: Nobody can guess the outcome before it happens. When we want things to be fair, usually some underlying set of outcomes will be equally likely (although in many games some combinations of outcomes are more likely than others).

Why Be Random? (cont.) Example: Pick “heads” or “tails.” Flip a fair coin. Does the outcome match your choice? Did you know before flipping the coin whether or not it would match?

Why Be Random? (cont.) Statisticians don’t think of randomness as the annoying tendency of things to be unpredictable or haphazard. Statisticians use randomness as a tool. But, truly random values are surprisingly hard to get…

It’s Not Easy Being Random It’s surprisingly difficult to generate random values even when they’re equally likely. Computers have become a popular way to generate random numbers. Even though they often do much better than humans, computers can’t generate truly random numbers either. Since computers follow programs, the “random” numbers we get from computers are really pseudorandom. Fortunately, pseudorandom values are good enough for most purposes.

It’s Not Easy Being Random (cont.) There are ways to generate random numbers so that they are both equally likely and truly random. The best ways we know to generate data that give a fair and accurate picture of the world rely on randomness, and the ways in which we draw conclusions from those data depend on the randomness, too.

Practical Randomness We need an imitation of a real process so we can manipulate and control it. In short, we are going to simulate reality.

A Simulation The sequence of events we want to investigate is called a trial. The basic building block of a simulation is called a component. Trials usually involve several components. After the trial, we record what happened—our response variable. There are seven steps to a simulation…

Simulation Steps Identify the component to be repeated. Explain how you will model the component’s outcome. Explain how you will combine the components to model a trial. State clearly what the response variable is. Run several trials. Collect and summarize the results of all the trials. State your conclusion.

Suppose a basketball player has an 80% free throw success rate Suppose a basketball player has an 80% free throw success rate. How can we use random numbers to simulate whether or not she makes a foul shot? How many shots might she be able to make in a row without missing? Describe the waiting time simulation of having her shoot free throws until she misses, counting the number of successes.

How would our simulation procedure change if her success rate were only 72%? How would a trial and our response variable change if we wanted to know how many shots she might make out of 5 chances she gets at a crucial point in the game?

How would a trial and our response variable change if we want to know her chances of hitting both shots when she goes to the line to shoot two?

What Can Go Wrong? Don’t overstate your case. Beware of confusing what really happens with what a simulation suggests might happen. Model outcome chances accurately. A common mistake in constructing a simulation is to adopt a strategy that may appear to produce the right kind of results. Run enough trials. Simulation is cheap and fairly easy to do.

What have we learned? How to harness the power of randomness. A simulation model can help us investigate a question when we can’t (or don’t want to) collect data, and a mathematical answer is hard to calculate. How to base our simulation on random values generated by a computer, generated by a randomizing device, or found on the Internet. Simulations can provide us with useful insights about the real world.