Warm Up 3 2/5 Can DNA leave the nucleus?

Slides:



Advertisements
Similar presentations
Click Here to Begin Your Lab
Advertisements

Translation By Josh Morris.
Mutations. DNA mRNA Transcription Introduction of Molecular Biology Cell Polypeptide (protein) Translation Ribosome.
Transcription & Translation Worksheet
Transcription and Translation
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece.
Transcription and Translation
Proteins are made by decoding the Information in DNA Proteins are not built directly from DNA.
FEATURES OF GENETIC CODE AND NON SENSE CODONS
How Proteins are Produced
Sec 5.1 / 5.2. One Gene – One Polypeptide Hypothesis early 20 th century – Archibald Garrod physician that noticed that some metabolic errors were found.
PowerPoint ® Lecture Slides prepared by Janice Meeking, Mount Royal College C H A P T E R Copyright © 2010 Pearson Education, Inc. 3 Cells: The Living.
GENE EXPRESSION. Gene Expression Our phenotype is the result of the expression of proteins Different alleles encode for slightly different proteins Protein.
Gene to Protein Gene Expression.
RNA Structure Like DNA, RNA is a nucleic acid. RNA is a nucleic acid made up of repeating nucleotides.
7. Protein Synthesis and the Genetic Code a). Overview of translation i). Requirements for protein synthesis ii). messenger RNA iii). Ribosomes and polysomes.
Cell Division and Gene Expression
Chapter 14 Genetic Code and Transcription. You Must Know The differences between replication (from chapter 13), transcription and translation and the.
Chapter 17 From Gene to Protein. Protein Synthesis  The information content of DNA  Is in the form of specific sequences of nucleotides along the DNA.
©1998 Timothy G. Standish From DNA To RNA To Protein Timothy G. Standish, Ph. D.
Parts is parts…. AMINO ACID building block of proteins contain an amino or NH 2 group and a carboxyl (acid) or COOH group PEPTIDE BOND covalent bond link.
Today 14.2 & 14.4 Transcription and Translation /student_view0/chapter3/animation__p rotein_synthesis__quiz_3_.html.
Example 1 DNA Triplet mRNA Codon tRNA anticodon A U A T A U G C G
G U A C G U A C C A U G G U A C A C U G UUU UUC UUA UCU UUG UCC UCA
Protein Synthesis Translation e.com/watch?v=_ Q2Ba2cFAew (central dogma song) e.com/watch?v=_ Q2Ba2cFAew.
Chapter 17 Membrane Structure and Function From Gene to Proteins.
Figure 17.4 DNA molecule Gene 1 Gene 2 Gene 3 DNA strand (template) TRANSCRIPTION mRNA Protein TRANSLATION Amino acid ACC AAACCGAG T UGG U UU G GC UC.
How Genes Work: From DNA to RNA to Protein Chapter 17.
Gene Translation:RNA -> Protein How does a particular sequence of nucleotides specify a particular sequence of amino acids?nucleotidesamino acids The answer:
F. PROTEIN SYNTHESIS [or translating the message]
DNA.
From DNA to Protein.
Translation PROTEIN SYNTHESIS.
Whole process Step by step- from chromosomes to proteins.
Please turn in your homework
The blueprint of life; from DNA to Protein
Where is Cytochrome C? What is the role? Where does it come from?
Overview: The Flow of Genetic Information
Mutations.
Warm-Up 3/12/13 After transcription, an mRNA molecule with the sequence A U A C G C A G U was created. What was the sequence of the original DNA strand?
Transcription and Translation
What is Transcription and who is involved?
From Gene to Phenotype- part 2
Ch. 17 From Gene to Protein Thought Questions
Gene Expression: From Gene to Protein
Gene Expression: From Gene to Protein
Gene Expression: From Gene to Protein
From Gene to Protein The information content of DNA is in the form of specific sequences of nucleotides The DNA inherited by an organism leads to specific.
Overview: The Flow of Genetic Information
Section Objectives Relate the concept of the gene to the sequence of nucleotides in DNA. Sequence the steps involved in protein synthesis.
Protein Synthesis Translation.
Overview: The Flow of Genetic Information
Chapter 17 From Gene to Protein.
Transcription You’re made of meat, which is made of protein.
Gene Expression: From Gene to Protein
Chapter 17 From Gene to Protein.
Protein Synthesis The information of DNA is in the form of specific sequences of nucleotides along the DNA strands The DNA inherited by an organism leads.
SC-100 Class 25 Molecular Genetics
Protein Structure Timothy G. Standish, Ph. D..
Today’s notes from the student table Something to write with
Transcription and Translation
Overview: The Flow of Genetic Information
Central Dogma and the Genetic Code
Bellringer Please answer on your bellringer sheet:
DNA, RNA, Amino Acids, Proteins, and Genes!.
How does DNA control our characteristics?
Chapter 17: From Gene to Protein
DNA and Words Activity.
Mutations Timothy G. Standish, Ph. D..
Chapter 17: From Gene to Protein
Presentation transcript:

Warm Up 3 2/5 Can DNA leave the nucleus? Instead, a copy of it is made named ____. The process of making a disposable copy of DNA to RNA is called ____. Put the following steps of transcription in order: a. 1 strand of the DNA serves as a template to make mRNA strand. b. mRNA exits the nucleus through the nuclear pore. c. RNA polymerase binds to the promoter site. d. mRNA goes to a ribosome. e. RNA polymerase unzips the DNA. 5. What is the monomer of protein?

transcription-

Take out your Ch. 12 DNA Main Concepts paper from yesterday Skip a line from DNA Replication. Write Transcription & underline it. Write a summary about the process of transcription. What is it? Why is it necessary? What do we start and end with? What are the steps? Where does it take place? Where does it go when finished? Include the words: RNA polymerase, promoter, intron, exon, mRNA, ribosome

Translation- RNA to Protein

rRNA (ribosomal)- makes up major part of ribosomes

Genetic Code “Language” of mRNA read 3 bases at a time- codon codes for amino acid

Second mRNA base U C A G UUU UUC UUA UUG CUU CUC CUA CUG AUU AUC AUA AUG GUU GUC GUA GUG Met or start Phe Leu lle Val UCU UCC UCA UCG CCU CCC CCA CCG ACU ACC ACA ACG GCU GCC GCA GCG Ser Pro Thr Ala UAU UAC UGU UGC Tyr Cys CAU CAC CAA CAG CGU CGC CGA CGG AAU AAC AAA AAG AGU AGC AGA AGG GAU GAC GAA GAG GGU GGC GGA GGG UGG UAA UAG Stop UGA Trp His Gln Asn Lys Asp Arg Gly First mRNA base (5′ end) Third mRNA base (3′ end) Glu

a chain of amino acids= polypeptide chain= protein Connected by peptide bonds

Gene 1 Gene 2 Gene 3 DNA strand (template) mRNA Protein Amino acid A C molecule Gene 1 Gene 2 Gene 3 DNA strand (template) TRANSCRIPTION mRNA Protein TRANSLATION Amino acid A C G T U Trp Phe Gly Ser Codon 3′ 5′

tRNA (transfer)- transfer each amino acid to the ribosome as specified by mRNA

tRNA attaches the correct anticodon to the corresponding codon on the mRNA TRANSCRIPTION TRANSLATION DNA mRNA Ribosome Polypeptide Amino acids tRNA with amino acid attached tRNA Anticodon Trp Phe Gly A G C U Codons 5′ 3′

What are the amino acids to this polypeptide chain? An mRNA strand reads AUGUUUGGCAACUAG What are the amino acids to this polypeptide chain?

What are the amino acids to this mRNA strand? Second mRNA base U C A G UUU UUC UUA UUG CUU CUC CUA CUG AUU AUC AUA AUG GUU GUC GUA GUG Met or start Phe Leu lle Val UCU UCC UCA UCG CCU CCC CCA CCG ACU ACC ACA ACG GCU GCC GCA GCG Ser Pro Thr Ala UAU UAC UGU UGC Tyr Cys CAU CAC CAA CAG CGU CGC CGA CGG AAU AAC AAA AAG AGU AGC AGA AGG GAU GAC GAA GAG GGU GGC GGA GGG UGG UAA UAG Stop UGA Trp His Gln Asn Lys Asp Arg Gly First mRNA base (5′ end) Third mRNA base (3′ end) Glu What are the amino acids to this mRNA strand? CUUCAUUCUUAA

What are the 3 RNAs needed for protein synthesis?

What are the 3 RNAs needed for protein synthesis? -mRNA (messenger) -rRNA (ribosomal) -tRNA (transfer)

2/4 Warm Up 1. Describe this picture in your own words.

2. Describe this picture in your own words. A bureau is a cabinet.

3. Why is transcription and translation also called protein synthesis? 4. What is mRNA? What does it do? 5. Protein is made up of smaller molecules called _______ _________. (starts with A’s)