T. L. Guasco, B. M. Elliott, M. Z. Kamrath and M. A. Johnson

Slides:



Advertisements
Similar presentations
Infrared spectroscopy of metal ion-water complexes
Advertisements

I.R. Spectroscopy C.I. 6.4.
Characterization of Structural Motifs for CO 2 Accommodation in Two Model Ionic Liquid Systems Using Cryogenic Ion Vibrational Predissociation Spectroscopy.
Robert C. Dunbar Case Western Reserve University Nick C. Polfer, Jos Oomens FOM-Institute for Plasma Physics Structure Investigation of Cation-Pi Complexes.
Water Solvation of Copper Hydroxide Brett Marsh-UW Madison.
Study on the photodissociation and symmetry of SO 2 + (D) Zhong Wang, Limin Zhang, Shuqin Yu, Shilin Liu, Xingxiao Ma 中国科学技术大学 University of Science &
Condensed phase vs. Isolated gas phase spectra Solution phase A A A A A A W W W W W WW W W W W W W W W W W W: water A: sample ( nm) ( nm) Isolated.
Spectroscopy 1: Rotational and Vibrational Spectra CHAPTER 13.
Ultraslow Dissociation of H 2 + Via Intense Laser Pulses Presented by: Brad Moser And George Gibson DAMOP 2010.
Infrared Spectroscopy of Doubly-Charged Metal-Water Complexes
Infrared spectroscopy of Li(methylamine) n (NH 3 ) m clusters Nitika Bhalla, Luigi Varriale, Nicola Tonge and Andrew Ellis Department of Chemistry University.
TOF Mass Spectrometer &
IR spectroscopy of first-row transition metal clusters and their complexes with simple molecules FELIX facility, Radboud University Nijmegen, the Netherlands.
Probing isomer interconversion in anionic water clusters using an Ar-mediated pump- probe approach T. L. Guasco, G. H. Gardenier, L. R. McCunn, B. M. Elliott,
Hot molecules in helium nanodroplets: a new route to optical spectra Benjamin Shepperson, Adrian Boatwright, Cheng Feng, Daniel Spence, Shengfu.
EXPLORING SOLVENT SHAPE AND FUNCTION USING MASS- AND ISOMER-SELECTIVE VIBRATIONAL SPECTROSCOPY Special thanks to Tom, Anne and Terry.
Isomer Selection in NO 2 ˉ · H 2 O · Ar Rachael Relph Rob Roscioli, Ben Elliott, Joe Bopp, Tim Guasco, George Gardenier Mark Johnson Johnson Lab Yale University.
Introduction Methods Conclusions Acknowledgement The geometries, energies, and harmonic vibrational frequencies of complexes studied were calculated using.
Chapter 12 Infrared Spectroscopy Jo Blackburn Richland College, Dallas, TX Dallas County Community College District  2006,  Prentice Hall Organic Chemistry,
Robert C. Dunbar Case Western Reserve University Nicolas Polfer University of Florida Jeffrey Steill, Jos Oomens FOM Institute for Plasma Physics $$$ FOM,
Photoinitiation of intra-cluster electron scavenging: An IR study of the CH 3 NO 2 ·(H 2 O) 6 anion Kristin Breen, Timothy Guasco, and Mark Johnson Department.
Christopher Leavitt Yale University Vibrational spectra of cryogenic peptide ions using H 2 predissociation spectroscopy.
Ionization Energy Measurements and Spectroscopy of HfO and HfO+
Femtosecond Laser Spectroscopy of C 60 Nieuwegein, The Netherlands August 21, 2001 Eleanor Campbell, Göteborg University & Chalmers, Sweden R.D. Levine,
Bonding & dynamics of CN-Rg and C 2 -Rg complexes Jiande Han, Udo Schnupf, Dana Philen Millard Alexander (U of Md)
Multiple Photon Absorption in Hydrated Cesium Ion Clusters Jordan Beck, Jim Lisy June 17,2008 OSU International Symposium on Molecular Spectroscopy.
Kristin Breen, Helen Gerardi, George Gardenier, Timothy Guasco,
Electronic and vibronic spectroscopy of crown ether water complexes: benzo-15-crown-5 (B15C) and 4’-aminobenzo- 15-crown (ABC) V. Alvin Shubert and Timothy.
The character of the long-lived state formed from S 1 of Phenylacetylene Philip M. Johnson and Trevor J. Sears Brookhaven National Laboratory and Stony.
P. D. CARNEGIE, B. BANDYOPADHYAY AND M. A. DUNCAN
Ohio State (Current and recent): Laura Dzugan Jason FordSamantha Horvath Meng Huang Zhou LinMelanie Marlett Bernice Opoku-AgyemanAndrew PetitBethany Wellen.
Towards Isolation of Organometallic Iridium Catalytic Intermediates Arron Wolk Johnson Laboratory Thursday, June 20 th, 2013.
Vibrational Predissociation Spectra in the Shared Proton Region of Protonated Formic Acid Wires: Characterizing Proton Motion in Linear H-Bonded Networks.
Infrared Spectra of Chloride- Fluorobenzene Complexes in the Gas Phase: Electrostatics versus Hydrogen Bonding Holger Schneider OSU International Symposium.
IR spectra of Methanol Clusters (CH3OH)n Studied by IR Depletion and VUV Ionization Technique with TOF Mass Spectrometer Department of Applied Chemistry.
Proton Sponges: A Rigid Organic Scaffold to Reveal the Quantum Structure of the Intramolecular Proton Bond Andrew F. DeBlase, Michael T. Scerba, Thomas.
Infrared spectroscopy of cold, hydrated alkaline-earth salt clusters
Dispersed fluorescence studies of jet-cooled HCF and DCF: Vibrational Structure of the X 1 A state.
H 2 Predissociation Spectroscopy: Arron Wolk Yale University Infrared Predissociation Spectroscopy of H 2 -tagged Dicarboxylic Acid Anions.
Gas Phase Infrared Spectroscopy of Protonated Species Department of Chemistry University of Georgia Athens Georgia,
Itaru KURUSU, Reona YAGI, Yasutoshi KASAHARA, Haruki ISHIKAWA Department of Chemistry, School of Science, Kitasato University ULTRAVIOLET AND INFRARED.
IR photodepletion and REMPI spectroscopy of Li(NH 2 Me) n clusters Tom Salter, Victor Mikhailov, Corey Evans and Andrew Ellis Department of Chemistry International.
Protonated Water Clusters Revisited: Investigating the Elusive Excess Proton Vibrational Signature using Cryogenic Ion Spectroscopy Joseph Fournier, Christopher.
Three-Dimensional Water Networks Solvating an Excess Positive Charge: New Insights into the Molecular Physics of Ion Hydration Conrad T. Wolke Johnson.
How Do Networks of Water Accommodate an Excess Electron?, Joseph R. Roscioli, and Mark A. Johnson Nathan I. Hammer, Joseph R. Roscioli, and Mark A. Johnson.
From the Bottom Up: Hydrogen Bonding in Ionic Liquids 6/19/2014 Olga Gorlova, Conrad Wolke, Joseph Fournier, Christopher Johnson and Mark Johnson.
Heavy Atom Vibrational Modes and Low-Energy Vibrational Autodetachment in Nitromethane Anions Michael C. Thompson, Joshua H. Baraban, Devin A. Matthews,
Water network-mediated, electron induced proton transfer in anionic [C 5 H 5 N·(H 2 O) n ]¯ clusters: Size-dependent formation of the pyridinium radical.
IR, NMR, and MS CHEM 315 Lab 8. Molecular Structure and Spectra The most powerful and efficient methods currently in use to characterize the structure.
CONFORMATION-SPECIFIC ELECTRONIC SPECTROSCOPY OF JET-COOLED 5-PHENYL-1-PENTENE NATHAN R. PILLSBURY, TALITHA M. SELBY, AND TIMOTHY S. ZWIER, Department.
Vibrational Predissociation Spectroscopy of Homoleptic Heptacoordinate Metal Carbonyl Complexes Allen M. Ricks and Michael A. Duncan Department of Chemistry.
Temperature Dependence of Rb + (H 2 O) n and Rb + (H 2 O) n Ar (n=3-5) Cluster Ions Amy L. Nicely OSU International Symposium on Molecular Spectroscopy.
Erin M. Duffy, Brett M. Marsh, Jonathan M. Voss, Etienne Garand University of Wisconsin, Madison International Symposium on Molecular Spectroscopy June.
Helen K. Gerardi1, Andrew F. DeBlase1, Xiaoge Su2, Kenneth D
Jacob T. Stewart and Bradley M
Vibrational Signatures of Solvent-Mediated Core Ion Deformation in Size-Selected [MgSO4Mg(H2O)n=4-11]2+ Clusters Patrick Kelleher, Joseph DePalma, Christopher.
Spectroscopy in Traps: ISMS 2016
Introduction Spectroscopy is an analytical technique which helps determine structure. It destroys little or no sample. The amount of light absorbed by.
E. D. Pillai, J. Velasquez, P.D. Carnegie, M. A. Duncan
Allen M. Ricks and Michael A. Duncan Department of Chemistry
from W. Demtröder “Molecular Physics”
High Resolution Infrared Spectroscopy of Linear Cluster Ions
Lecture 8: Volume Interactions
Diagnosis of a High Harmonic Beam Using
Frauke Schroeder and Edward R. Grant Department of Chemistry
WM4 Instrumental analysis
Vibrational Predissociation Spectroscopy of Uranium Complexes
High Harmonic Analysis Using a COLTRIMS Technique
Lecture 8: Volume Interactions
from W. Demtröder “Molecular Physics”
Presentation transcript:

T. L. Guasco, B. M. Elliott, M. Z. Kamrath and M. A. Johnson Isotopomer selective infrared predissociation spectroscopy of charged water clusters T. L. Guasco, B. M. Elliott, M. Z. Kamrath and M. A. Johnson

Predissociation Dip Spectroscopy Coaxial TOF Reflectron Detector ±1.5 keV hnpump (scanned) hnprobe (fixed) A schematic of the double resonance, IR2DR, method. The integration of the coaxial TOF enables the triple focusing necessary for the pump/probe methodology.The black inset trace shows the typical mass spectrum of NO2‾ · H2O resulting when both lasers are tuned to vibrational resonances. The blue and red inset traces are the prdissociation spectra obtained by monitoring the arrival of the fragments resulting from the ion packet interacting with the pump and probe lasers, respectively, as the pump laser frequency is scanned through the infrared. pump fragment Signal probe fragment Time of Flight, ms

H2DO+ · Ar Predissociation Yield Photon Energy, cm-1 2200 2400 2600 2800 3000 3200 3400 3600 3800 Photon Energy, cm-1

Isomers of H2DO+ · Ar 2400 2600 2800 3000 3200 3400 3600 3800

H5O2+ · RG nsp na B) H5O2+ · Ne ns Predissociation Yield A) H5O2+ · Ar 1000 1500 2000 2500 3000 3500 Photon Energy, cm-1

H4DO2+ · Ar 3400 3500 3600 3700 3800 2400 2500 2600 2700 2800 Ar end Ar-bound Free end experimental shared D

H4DO2+ · Ar Predissociation Yield Photon Energy, cm-1 800 2400 2800 1200 1600 2400 2800 3200 3600 Photon Energy, cm-1

3500 3600 3700 3800 Photon Energy, cm-1

Predissociation Yield 800 1200 1600 2400 2800 3200 3600 Photon Energy, cm - 1

(H2O)n¯ HOH bending region (H2O)4 ¯· Ar6 Bare water Sharp feature Photon Energy, cm-1 1400 1500 1600 1700 1800 HOH bending region (H2O)4 ¯· Ar6 Bare water Sharp feature red-shifted relative to bare water molecule

Double acceptor or “AA” water molecule contacts electron cloud H2O bend OD stretch (H2O)4–·Ar6 // (D2O)4–·Ar6 C D AA Calculated Intensity // A B Predissociation Yield Double acceptor or “AA” water molecule contacts electron cloud // 1400 1500 1600 1700 1800 2400 2500 2600 2700 2800 Photon Energy, cm-1 11

(H2O)7¯ · Arn II I I' Electron Binding Energy (eV) Isomer I n = 8 10 8 Isomer I' 6 5 Isomer II 4 2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 Electron Binding Energy (eV)

(H2O)7¯ · Arn * Photon Energy, cm-1 Isomer I AA AA Isomer I' Isomer II 1600 3200 3400 Photon Energy, cm-1

(H2O)6¯ · D2O · Arn A) B) * * * Relative Ion Intensity TOF (msec) 50 (H2O)6-·Ar (H2O)6- (H2O)7-·Ar (H2O)3-·Ar Relative Ion Intensity B) D2O·(H2O)6- * * * 50 55 60 65 70 TOF (msec)

(H2O)6¯ · D2O · Arn * Photon Energy, cm-1 AA HOD AA 2400 2600 2800 1000 1200 1400 1600 2400 2600 2800 3000 3200 3400 3600 3800 Photon Energy, cm-1

Isomer Selective Spectroscopy of OD stretches Associated with AA water (H2O)6¯ · D2O · Arn By probing OD bands we are able to definitively isolate the contributions from a single water molecule 2400 2500 2600 2700 2800 Photon Energy, cm-1

Isomer Selective Spectroscopy of OD Stretches Associated with Scaffold Water Molecules of (H2O)6¯ · D2O · Arn By probing OD bands we are able to definitively isolate the contributions from a single water molecule 2400 2500 2600 2700 2800 Photon Energy, cm-1

(H2O)6¯ · D2O · Ar5 Double Resonance Results Pump: 2400 – 2800 cm-1 Probe: 1138 cm-1 (AA DOD Bend) 1000 1200 1400 1600 1800 2400 2600 2800 Photon Energy, cm-1

Conclusions Successful extension of isomer selective infrared predissociation technique to isotopomers Isolation of isomers with significant spectral overlap in H4DO2+· Ar Verification of bands associated with “AA” water in (H2O)n¯

Acknowledgments