Presentation is loading. Please wait.

Presentation is loading. Please wait.

Three-Dimensional Water Networks Solvating an Excess Positive Charge: New Insights into the Molecular Physics of Ion Hydration Conrad T. Wolke Johnson.

Similar presentations


Presentation on theme: "Three-Dimensional Water Networks Solvating an Excess Positive Charge: New Insights into the Molecular Physics of Ion Hydration Conrad T. Wolke Johnson."— Presentation transcript:

1 Three-Dimensional Water Networks Solvating an Excess Positive Charge: New Insights into the Molecular Physics of Ion Hydration Conrad T. Wolke Johnson Group June 24, 2015 International Symposium on Molecular Spectroscopy

2 Microhydration of Cs + (H 2 O) 20  Cs + (H 2 O) 20 is a “Magic” cluster  Predict structure from MS (Castleman, 1991)  Identify structure by the band pattern of free OH stretch (Williams, 2013) Cooper et al., JPCA, 117, 6571 (2013) Selinger et al., JPC, 95, 8442 (1991) Photon Energy (cm -1 ) 280032003600 Bound OH stretches B3LYP/ 6-31+G** Pentagonal Dodecahedron AAD AD Free OH stretch

3 ESI Temperature Controlled Ion Trap Ion Optics Flight Tube Wiley- McLaren TOF Reflectron Turning Quad MCP Nd:YAG OPO/OPA Tunable IR 600-4500 cm -1 RF-Ion Guides Wavemeter 2-4 kV Dry Air mM Solution 1 st Skimmer Capillary ESI Needle H 2 O/D 2 O P Pressure 1 st Diff. Stage Tandem Time of Flight Mass Spectrometer

4 Infrared Spectrum of Cs + (H 2 O) 20 Norm. Int. (a.u.) 440460480500520540 Mass to Charge Ratio (amu/e) Cs + (H 2 O) 20  Using D 2 messenger tagging to acquire complete IR predissociation spectrum of cold Cs + hydrates from 400 to 3800 cm -1 Cooper et al., JPCA, 117, 6571 (2013) Fournier et al., PNAS, 111, 18132 (2014) OH stretches H 2 O bend Librations Calc. Int. 4008001200160020002400280032003600 Photon Energy (cm -1 ) Pred. Yield (a.u.) Knut Asmis (Free Electron Laser) B3LYP/ 6-31++G**

5 290031003300350037003900 D 2 Predissociation Yield (a.u.) 21002300250027002900 Photon Energy (cm -1 ) Effects of Deuteration: Cs + (D 2 O) 20  IR Bands of the H-bonded network still featureless  Deuteration causes the expected global red-shift of the IR spectrum Continuum resolves into distinct bands Cs + (H 2 O) 20 Cs + (D 2 O) 20

6 Refine Harmonic Calculations: Cs + (D 2 O) 20 D 2 Pred. Yield / Calc. Intensity (a.u.) Cs + (D 2 O) 20 21002300250027002900 Photon Energy (cm -1 ) B3LYP/6-31++G** Schulz et al., CPC, 18, 98 (2002)  IR Bands of the H-bonded network still featureless  Deuteration causes the expected global red-shift of the IR spectrum Continuum resolves into distinct bands Use all IR features to match experiment with calculation

7 D 2 Pred. Yield / Calc. Intensity (a.u.) Cs + (D 2 O) 20 21002300250027002900 Photon Energy (cm -1 ) B3LYP/6-31++G** Free AAD ADD 1 ADD 2 ADD 3 Refine Harmonic Calculations: Cs + (D 2 O) 20  One free OH stretch from AAD type water H-Bond acceptor (A) and donor (D)  Asymmetric bound OH stretches of ADD type waters  Corresponding bound AAD OH stretch and symmetric ADD stretches Schulz et al., CPC, 18, 98 (2002) Bound AAD sym asym

8 D 2 Pred. Yield / Calc. Intensity (a.u.) Cs + (D 2 O) 20 21002300250027002900 Photon Energy (cm -1 ) B3LYP/6-31++G** Can we assign H-bonded OH stretches to individual types of water molecules? Refine Harmonic Calculations: Cs + (D 2 O) 20 Schulz et al., CPC, 18, 98 (2002) Free AAD Bound AAD ADD 1 ADD 2 ADD 3 sym asym

9 Photon Energy (cm -1 ) Cs + (H 2 O) 6 – Models for Solvation Mechanism Sotiris S. Xantheas PNNL James Lisy UIUC  Unbiased reproduction of IR spectra No Scaling  Exact mapping of the PES Ion – Water Water – Water D 2 Pred. Yield / Calc. Intensity (a.u.) Kolaski et al., JCP, 126, 074302 (2007) CCSD(T)/aug-cc-pVDZ MP2/aug-cc-pVTZ (VPT2) 320033003400350036003700380039004000 Cs + (H 2 O) 6

10 Assignment of Local Mode Patterns D 2 Pred. Yield / Calc. Int. (a.u.) Photon Energy (cm -1 ) CCSD(T)/aug-cc-pVDZ MP2/aug-cc-pVTZ (VPT2) 3200330034003500360037003800 Single Donor Cyclic Core Can we isolate a single H 2 O to prove the band assignment?

11 Spectral Isolation of Local Band Displacement Garand et al., Science, 335, 694 (2012) Stearns et al., PCCP, 11, 125 (2009) Large shifts from isotopic labeling of localized 15 N and 13 C atoms confine single transitions Minor contributions to the normal modes are also evident  How about non-covalent bonds?  Isolation of local band displacement contribution through isotopic labeling Etienne Garand C=O Stretch N-H Bend

12 ESI Temperature Controlled Ion Trap Ion Optics Flight Tube Reflectron MCP Nd:YAG OPO/OPA Tunable IR 600-4500 cm -1 Wavemeter Isotopic Labeling Scheme for H-Bonded Networks Wiley- McLaren TOF Turning Quad RF-Ion Guides 2-4 kV Dry Air mM Solution 1 st Skimmer Capillary ESI Needle D2OD2O P Pressure 1 st Diff. Stage Cs + (D 2 O) n + H 2 O vap Cs + (D 2 O) n-m (H 2 O) m

13 230240250260270 Relative Intensity (a.u.) Mass to Charge (amu/e) H 2 O exchange 5 67 Cs + (D 2 O) n MS Evidence: Does H 2 O stay intact? Liquid phase: 25% H 2 O H 2 O : D 2 O →50% HDO 25% D 2 O  Mass Spec spaced by 2 amu/Z  No HOD bending mode H 2 O stays intact Isotopic Labeling of Cs + (D 2 O) n-m (H 2 O) m D 2 Pred. Yield (a.u.) Photon Energy (cm -1 ) 1100120013001400150016001700 Cs + (D 2 O) 5 (H 2 O) HOH Bending IR Spectroscopic Evidence: HOD Bend D2OD2O H2OH2O

14 3400350036003700 Cs + (D 2 O) 5 (H 2 O) Cs + (H 2 O) 6 Photon Energy (cm -1 )  Infrared spectrum of the isotopically labeled complex stays intact Each H 2 O adds its 2 individual modes All 6 position equally populated  FWHM of OH stretch bands are reduced Evidence for minor vibrational excitonic coupling Can we isolate modes from individual H 2 O molecules? 27cm -1 15cm -1 D 2 Predissociation Yield (a.u.) Spectral Manifestation of Cs + (D 2 O) 5 (H 2 O)

15 ESI Temperature Controlled Ion Trap Ion Optics Flight Tube Reflectron Coaxial TOF Reflectron MCP Nd:YAG OPO/OPA Tunable IR 600-4500 cm -1 Ion Optics RF-Ion Guides Wavemeter OPO/OPA Isotopomer Specific IR-IR Double Resonance Wiley- McLaren TOF Turning Quad Cs + (D 2 O) n + H 2 O vap Cs + (D 2 O) n-m (H 2 O) m

16 ESI Temperature Controlled Ion Trap Ion Optics Flight Tube Coaxial TOF Reflectron MCP Nd:YAG OPO/OPA Tunable IR 600-4500 cm -1 Ion Optics Wavemeter Isotopomer Specific IR-IR Double Resonance OPO/OPA Cs + (D 2 O) n + H 2 O vap Cs + (D 2 O) n-m (H 2 O) m RF-Ion Guides Wiley- McLaren TOF Turning Quad

17 Isotopomer Specific IR Spectra of Cs + (H 2 O)(D 2 O) 5 3400350036003700 N 2 Pred. Yield (a.u.) Photon Energy (cm -1 ) IR 2 MS 3 Signal Single Donor Cyclic Core

18 CIVP Spectrum IR 2 MS 3 Dip Signal 320033003400350036003700 T Trap = 10 K Photon Energy (cm -1 ) A B C D A B C D I – (H 2 O)(D 2 O) – Isotopomer Specific IR Spectra MP2/aug-cc-pVDZ(-PP)

19 CIVP Spectrum IR 2 MS 3 Dip Signal 320033003400350036003700 T Trap = 25 K Photon Energy (cm -1 ) A B C D A B C D I – (H 2 O)(D 2 O) – Isotopomer Specific IR Spectra MP2/aug-cc-pVDZ(-PP)

20  Deuteration of large clathrate alkali hydrates resolves distinct patterns in the H-bonded water stretch continuum Conclusions 21002300250027002900 Photon Energy (cm -1 ) Cs + (D 2 O) 20  Trace Isotope Scheme in the gas-phase allows labeling of an intact H 2 O  Spectral Isolation of the two OH stretching modes originating from a single H 2 O molecule  Vibrational Spectroscopy to unravel dynamical behavior in H-Bonded Networks Cs + (D 2 O) 5 (H 2 O)

21 Acknowledgments Johnson Group Joseph A. Fournier Olga Gorlova Stephanie M. Craig Joanna K. Denton Joseph W. DePalma Chinh H. Duong Patrick J. Kelleher Fabian S. Menges Gary H. Weddle Mark A. Johnson PNNL Evangelos Miliordos Sotiris S. Xantheas

22 320033003400350036003700 50 100 150 200 250 300 17 Trap Temperature (K) Photon Energy (cm -1 ) Temperature Dependence of I ‒ (H 2 O) 2

23 Francesco Paesani, UCSD Molecular Dynamics of I ‒ (H 2 O) 2

24 Assignment of Local Mode Patterns D 2 Pred. Yield / Calc. Int. (a.u.) Photon Energy (cm -1 ) CCSD(T)/aug-cc-pVDZ MP2/aug-cc-pVTZ (anharmonic) 3200330034003500360037003800 Cyclic Core Single Donor IR 2 MS 3 Dip Signal

25 Conclusions 1.Precise Model for Ion solvation  Exact Predictions for Ion-Water and Water-Water interaction 2. Spectroscopic Isolation of a single isotopically labeled water molecule  Infrared Transitions  Chemical Environment Access to:  Dynamics  Phase Transitions of finite size systems

26 D 2 Predissociation Yield (a.u.) Photon Energy (cm -1 ) Cs + (H 2 O) 20 Cs + (D 2 O) 20 60010001400180022002600300034003800

27 D 2 Predissociation Yield (a.u.) Photon Energy (cm -1 ) Cs + (H 2 O) 20 Cs + (D 2 O) 20 60010001400180022002600300034003800

28 Microhydration of Monovalent Salts 3350350036003700 Cs + (H 2 O) n 34503550365037503400 Cs + (H 2 O) 6 Photon Energy (cm -1 ) IR Absorption (a.u.)

29 Simulations of complex aqueous environments, require microscopic behavior of ions under restricted solvation Cluster spectra provide input for Ion-water intermolecular potential surface Paesani, F. et al., J. Chem. Theory Comput. 11, 1145 (2015) Xantheas, S.S. Et al., PCCP, 16, 6886 (2014) Motivation: Models for Ocean Surface Layer

30 21002300250027002900  MD Calculation produced ̴1000 Structures  Refined by DFT yields the vibrational spectra  Minimum energy structure does not yield best Fit D 2 Pred. Yield / Calc. Intensity (a.u.) +0.947 kcal/mol Cs + (D 2 O) 20 Photon Energy (cm -1 ) Schulz et al., PCCP, 5, 5021 (2003) Electronic Structure Calculations B3LYP/6-31++G**

31 3400350036003700 N 2 Pred. Yield (a.u.) Photon Energy (cm -1 ) IR 2 MS 3 Dip Signal (a.u.) 3718 3699 Isotopomer Specific IR Spectra of Cs + (H 2 O)(D 2 O) 5


Download ppt "Three-Dimensional Water Networks Solvating an Excess Positive Charge: New Insights into the Molecular Physics of Ion Hydration Conrad T. Wolke Johnson."

Similar presentations


Ads by Google