M. Tigner, R. Helms, M. Palmer, D. Rubin, D. Sagan Cornell University

Slides:



Advertisements
Similar presentations
ILC Damping Ring R&D Using CESR Mark Palmer Cornell Laboratory for Accelerator-Based Science and Education.
Advertisements

Page 1 Collider Review Retreat February 24, 2010 Mike Spata February 24, 2010 Collider Review Retreat International Linear Collider.
CESR as Light Source David L. Rubin for the CESR Operations Group Cornell University Laboratory for Elementary-Particle Physics.
A U.S. Department of Energy Office of Science Laboratory Operated by The University of Chicago Argonne National Laboratory Office of Science U.S. Department.
SuperB and the ILC Damping Rings Andy Wolski University of Liverpool/Cockcroft Institute 27 April, 2006.
CESR-c Status CESR Layout - Pretzel, Wigglers, solenoid compensation Performance to date Design parameters Our understanding of shortfall Plans for remediation.
ATF2 FB/FF layout Javier Resta Lopez (JAI, Oxford University) for the FONT project group FONT meeting January 11, 2007.
Damping Rings Baseline Lattice Choice ILC DR Technical Baseline Review Frascati, July 7, 2011 Mark Palmer Cornell University.
Overview of ILC Plans D.Rubin April 17, D. Rubin2 ILC R&D Activities and Plans 1.Positron Source 2.Damping Ring 3.Low Emittance Transport - damping.
Experimental Plan for Achieving Low Emittance in CesrTA David Rubin Cornell Laboratory for Accelerator-Based Sciences and Education.
January 15, 2005D. Rubin - Cornell1 CESR-c Status -Operations/Luminosity December/January vs September/October -Machine studies and instrumentation -Simulation.
Low Emittance Program David Rubin Cornell Laboratory for Accelerator-Based Sciences and Education CesrTA.
July 22, 2005Modeling1 Modeling CESR-c D. Rubin. July 22, 2005Modeling2 Simulation Comparison of simulation results with measurements Simulated Dependence.
2011 Damping Rings Lattice Evaluation Mark Palmer Cornell University March 8, 2011.
Ultra-Low Emittance Storage Ring David L. Rubin December 22, 2011.
March 7, 2007 LET Issues (Cai/Kubo/Zisman) Global Design Effort 1 Low-Emittance Tuning Issues and Plans Yunhai Cai, Kiyoshi Kubo and Michael S. Zisman.
January 13, 2004D. Rubin - Cornell1 CESR-c BESIII/CLEO-c Workshop, IHEP January 13, 2004 D.Rubin for the CESR operations group.
Y. Ohnishi / KEK KEKB-LER for ILC Damping Ring Study Simulation of low emittance lattice includes machine errors and optics corrections. Y. Ohnishi / KEK.
ALCW at SLAC, January 7, 2004J. Rogers, A Damping Ring Primer1 A Damping Ring Primer J. Rogers Cornell University Linear collider emittance requirements.
Beam dynamics on damping rings and beam-beam interaction Dec 포항 가속기 연구소 김 은 산.
October 4-5, Electron Lens Beam Physics Overview Yun Luo for RHIC e-lens team October 4-5, 2010 Electron Lens.
Project Management Mark Palmer Cornell Laboratory for Accelerator-Based Sciences and Education.
CesrTA Experimental Plan M. Palmer for the CesrTA Collaboration November 17, 2008.
Emittance Measurement Needs for CesrTF M. Palmer Cornell University Laboratory for Elementary-Particle Physics.
November 14, 2004First ILC Workshop1 CESR-c Wiggler Dynamics D.Rubin -Objectives -Specifications -Modeling and simulation -Machine measurements/ analysis.
1 Proposal for a CESR Damping Ring Test Facility M. Palmer & D.Rubin November 8, 2005.
Low emittance tuning in ATF Damping Ring - Experience and plan Sendai GDE Meeting Kiyoshi Kubo.
Damping Ring Parameters and Interface to Sources S. Guiducci BTR, LNF 7 July 2011.
ILC Damping Ring Alternative Lattice Design ( Modified FODO ) ** Yi-Peng Sun *,1,2, Jie Gao 1, Zhi-Yu Guo 2 Wei-Shi Wan 3 1 Institute of High Energy Physics,
Motivation and Overview David Rubin Cornell Laboratory for Accelerator-Based Sciences and Education.
Kiyoshi Kubo Electron beam in undulators of e+ source - Emittance and orbit angle with quad misalignment and corrections - Effect of beam pipe.
February 5, 2005D. Rubin - Cornell1 CESR-c Status -Operations/Luminosity -Machine studies -Simulation and modeling -4.1GeV.
ATF status M. Ross October 15, 2004 The ATF is the largest test facility built exclusively for linear collider RD –Utility not reduced by the selection.
ILC Damping Ring R&D Using CESR Mark Palmer Cornell Laboratory for Accelerator-Based Science and Education.
CESR Test Accelerator Optics Correction and Tuning Tools David Sagan Cornell University.
Electron cloud study for ILC damping ring at KEKB and CESR K. Ohmi (KEK) ILC damping ring workshop KEK, Dec , 2007.
Global Design Effort ILC Damping Rings: R&D Plan and Organisation in the Technical Design Phase Andy Wolski University of Liverpool and the Cockcroft Institute,
CESR as Light Source David Rubin for the CESR Operations Group Cornell University Laboratory for Elementary-Particle Physics.
ILC Damping Rings: Configuration Status and R&D Plans Andy Wolski Lawrence Berkeley National Laboratory January 19, 2006.
Characterization of the Fast Ion Instability at CesrTA David Rubin Cornell University.
ILC BDS Commissioning Glen White, SLAC AWLC 2014, Fermilab May 14 th 2014.
CESR-c Plans for CESR (or Life Without CLEO) Mark A. Palmer David L. Rubin Second ILC Accelerator Workshop August 18, 2005.
Simulation for Lower emittance in ATF Damping Ring Kiyoshi Kubo Similar talk in DR WS in Frascati, May 2007 Most simulations were done several.
ILC DR Lower Horizontal Emittance, preliminary study
ILC BDS Alignment, Tuning and Feedback Studies
MDI and head-on collision option for electron-positron Higgs factories
For Discussion Possible Beam Dynamics Issues in ILC downstream of Damping Ring LCWS2015 K. Kubo.
Large Booster and Collider Ring
CesrTA Status and Planning
Coupling Correction at the Australian Synchrotron
First Look at Nonlinear Dynamics in the Electron Collider Ring
Luminosity Optimization at 250GeV
Recent Electron Cloud Studies at CESR and Future Plans
Low Emittance Tuning in CESR TA
Progress activities in short bunch compressors
Compensation of Detector Solenoid with Large Crossing Angle
CASA Collider Design Review Retreat Other Electron-Ion Colliders: eRHIC, ENC & LHeC Yuhong Zhang February 24, 2010.
LHC (SSC) Byung Yunn CASA.
The Proposed Conversion of CESR to an ILC Damping Ring Test Facility
Low Emittance Tuning David Rubin Cornell Laboratory for
Electron cloud studies at CESR
Status of Low Emittance Tuning at CESR TA
CLIC damping rings working plan towards the CDR
CesrTA Low Emittance Program David Rubin Cornell Laboratory for
Proposal for a CESR Damping Ring Test Facility
Yuri Nosochkov Yunhai Cai, Fanglei Lin, Vasiliy Morozov
Fanglei Lin, Yuhong Zhang JLEIC R&D Meeting, March 10, 2016
Fanglei Lin JLEIC R&D Meeting, August 4, 2016
DYNAMIC APERTURE OF JLEIC ELECTRON COLLIDER
CLIC luminosity monitoring/re-tuning using beamstrahlung ?
Presentation transcript:

Some Alignment and Instrumentation Issues for CESR as a Damping Ring Test Facility M. Tigner, R. Helms, M. Palmer, D. Rubin, D. Sagan Cornell University Laboratory for Elementary-Particle Physics

CesrTF Instrumentation and Alignment Issues CesrTF Goals Primary Goals Electron cloud measurements e- cloud buildup in wigglers e- cloud amelioration in wigglers Instability thresholds Ultra-low emittance Study emittance diluting effect of the e- cloud on the e+ beam Detailed comparisons between electrons and positrons Also look at fast-ion instability issues for electrons Alignment issues and emittance tuning algorithms Beam dynamics issues (including energy dependence 1.5 to 5.5 GeV operation) Secondary Goals ILC DR hardware testing January 19 CesrTF Instrumentation and Alignment Issues

Low Emittance Lattice Parameters Value Comments Wigglers 12 @ 2.1T Beam Energy 2.0 GeV Will explore low e designs in the 1.5-2.5 GeV range sE/E 8.6 x 10-4 ex 3.0 nm Wiggler-dominated value. Further reduction possible with b function (in wigglers) and wiggler field tuning and/or fewer active wigglers tx,y 47 ms Qx 14.53 Qy 9.59 Qz 0.1 Requires higher RF voltage than we typically use sz 6.9 mm ac 7.1 x 10-3 January 19 CesrTF Instrumentation and Alignment Issues

Further Parameter Information Energy: 1.5 to 5.5 GeV Bunch Spacing: Presently use 14 ns Can use alternating 6ns, 8ns scheme with activation of existing parallel feedback systems Intend to explore 2ns and/or 4ns option if needed for ILC DR studies Touschek Lifetime In ultra-low emittance operation expect lifetimes of a few to several minutes January 19 CesrTF Instrumentation and Alignment Issues

Low Emittance Lattice Functions Wiggler Insert Regions Note E-W Asymmetry January 19 CesrTF Instrumentation and Alignment Issues

Vertical Emittance Estimates Beam-Beam Scan with low current 1-on-1 Collisions in 1.88 GeV HEP Conditions (with pretzel) Differential vertical displacement controlled by phase advance between vertical separators in North Fast Luminosity Monitor provides measurement of overlap Peak a8.4 x 1028 cm-2 s-1 Measure sy = 2.66 mm (with by*=11.2 mm and eh=136 nm) a ey = 0.63 nm a ey/ ex ~ 0.005 = 4.7e-3 Vertical Emittance Estimates from Coupling Contribution: With ex=3.0 nm a ey ~ 15 pm With ex=2.0 nm and ey/ex ~ 0.0025 a ey ~ 5 pm Likely improvement without CLEO solenoid and pretzel! A. Temnykh M. Forster January 19 CesrTF Instrumentation and Alignment Issues

South IR Extraction Line Option ~18 m South insertion region for diagnostics and test devices ~40 m available for possible extraction line and diagnostics January 19 CesrTF Instrumentation and Alignment Issues

Emittance Measurement High resolution transverse size measurements Laserwire Also working on x-ray beam profile monitor Desired laserwire capabilities Bunch-by-bunch capability Possibly 2 ns to 14 ns bunch spacing Fast measurement Touschek lifetimes are short (minutes) Resolution suitable for sy~10 mm January 19 CesrTF Instrumentation and Alignment Issues

CesrTF Instrumentation and Alignment Issues Beam Sizes Expected beam sizes Vertical assumes perfect dispersion correction Values at center of South IR: sy ~ 11.6 mm sx ~ 79 mm Compton scattering from the positron beam can be viewed through the present CESR-c luminosity monitor window January 19 CesrTF Instrumentation and Alignment Issues

Luminosity Monitor Window Aluminum g Window Faces into South IR 1 in thick (0.26 X0) 16.1 m from center of CesrTF insertion region Looks at e+ beam Aperture (for 16.1 m): +/- 1.5 mrad vertical -5 to +2 mrad horizontal (negative is to inside of ring) January 19 CesrTF Instrumentation and Alignment Issues

Radiative Bhabha g Detector a Compton g Detector ? Segmented Scintillator Detector Offers possibility of measuring the Compton photon angular distribution Fast R7400 PMTs offer bunch-by-bunch response Well-understood operation January 19 CesrTF Instrumentation and Alignment Issues

Some Laserwire Discussion Points Beam sizes are comparable to ATF ATF scanning times seem somewhat long given the short beam lifetime and questions of stability 6 minutes for y scan 15 minutes for x scan Can we consider a system with sufficient power on the beam to complete a scan with Dt < tTouschek? CW laser system with fast detector versus pulsed laser system What are pros and cons? What are the costs? January 19 CesrTF Instrumentation and Alignment Issues

CesrTF Alignment Sensitivity Estimates Analytical estimates using CesrTF parameters Utilize A. Wolski’s procedures in his DR evaluation note http://www.desy.de/~awolski/ILCDR/Documentation_files/ILCDRAlignment.pdf Make rough sensitivity estimates for comparison purposes Some sources of vertical emittance Vertical steering a vertical dispersion Betatron coupling from horizontal to vertical Horizontal dispersion coupled into vertical Closed orbit errors from quadrupole misalignments Sensitivity: RMS quad misalignment to give a vertical orbit distortion equal to the beamsize for the target emittance (5 pm in our case) January 19 CesrTF Instrumentation and Alignment Issues

Alignment Sensitivity Estimates (cont’d) Coupling and dispersion from quadrupole rotations Sensitivity: RMS quadrupole rotation to generate the target vertical emittance Coupling and dispersion from sextupole misalignments Sensitivity: RMS sextupole misalignment to generate the target vertical emittance January 19 CesrTF Instrumentation and Alignment Issues

CesrTF Instrumentation and Alignment Issues Lattice Comparisons CesrTF ATF TESLA ILC 6 km Cicumference (m) 768 139 17000 6114 Energy (GeV) 2.0 1.28 5.0 5.066 Horizontal Emittance (nm) 2.5 1.0 5.1 5.5 Vertical Emittance (pm) 5.0 (target) 1.4 Energy Spread (x10-3) 0.86 0.55 1.3 1.5 Jx 1.6 Jy Qx 14.53 15.141 76.310 56.584 Qy 9.59 8.759 41.180 41.618 January 19 CesrTF Instrumentation and Alignment Issues

Lattice Sensitivities CesrTF ATF TESLA ILC 6km Quadrupole Alignment (nm) 756 241 80.7 198 Quadrupole Rotation (mrad) 245 825 40.5 58.3 Sextupole Alignment (mm) 227 45.6 11.3 40.4 ATF / TESLA / ILC from A. Wolski Note: these are sensitivity estimates and not actual tolerances Alignment sensitivities tend to be significantly less for CesrTF! Nominal CESR alignment resolutions and tolerances Quad Position: ~100 mm ~100-200 mm Quad Rotation: ~100 mrad ~100 mrad Sextupole Position: ~100 mm ~200-400 mm Local errors may be (are in a number of cases) larger January 19 CesrTF Instrumentation and Alignment Issues

Vertical Emittance Simulation Presently at an early stage of evaluation As expected from sensitivity estimates, most critical item is quadrupole alignment errors Need to pursue improvements in both the starting point alignment and in correction methods Target January 19 CesrTF Instrumentation and Alignment Issues

CesrTF Instrumentation and Alignment Issues Machine Corrections Starting the study of machine corrections Plots at right show impact of closed orbit correction Running average and standard deviation are plotted for a series of 200 seeds Thus right edge gives expected value Still testing/evaluating the full suite of corrections Then will explore emittance tuning schemes January 19 CesrTF Instrumentation and Alignment Issues

Alignment and Survey Issues Quadrupole alignment is a critical issue Need a ring-wide improvement Has major implications for the scope of the alignment upgrade In order to have a starting point consistent with 5-10 pm vertical emittance goal, should aim for better than 100 mm initial alignment capability We still need to review the impact of vibration/ground motion issues and magnet support stability (also magnet stability) Question: How much will upgrading the CesrTF alignment and survey capabilities benefit the alignment and survey R&D needed for the ILC damping rings? January 19 CesrTF Instrumentation and Alignment Issues