Www.cs.technion.ac.il/~reuven IBM2006 1 LP Rounding using Fractional Local Ratio Reuven Bar-Yehuda www.cs.technion.ac.il/~reuven.

Slides:



Advertisements
Similar presentations
Numbers Treasure Hunt Following each question, click on the answer. If correct, the next page will load with a graphic first – these can be used to check.
Advertisements

Angstrom Care 培苗社 Quadratic Equation II
1
1 Vorlesung Informatik 2 Algorithmen und Datenstrukturen (Parallel Algorithms) Robin Pomplun.
© 2008 Pearson Addison Wesley. All rights reserved Chapter Seven Costs.
Copyright © 2003 Pearson Education, Inc. Slide 1 Computer Systems Organization & Architecture Chapters 8-12 John D. Carpinelli.
Cognitive Radio Communications and Networks: Principles and Practice By A. M. Wyglinski, M. Nekovee, Y. T. Hou (Elsevier, December 2009) 1 Chapter 12 Cross-Layer.
Copyright © 2011, Elsevier Inc. All rights reserved. Chapter 6 Author: Julia Richards and R. Scott Hawley.
Author: Julia Richards and R. Scott Hawley
1 Copyright © 2013 Elsevier Inc. All rights reserved. Appendix 01.
1 Copyright © 2013 Elsevier Inc. All rights reserved. Chapter 3 CPUs.
Properties Use, share, or modify this drill on mathematic properties. There is too much material for a single class, so you’ll have to select for your.
Objectives: Generate and describe sequences. Vocabulary:
UNITED NATIONS Shipment Details Report – January 2006.
Thursday, April 11 Some more applications of integer
1 RA I Sub-Regional Training Seminar on CLIMAT&CLIMAT TEMP Reporting Casablanca, Morocco, 20 – 22 December 2005 Status of observing programmes in RA I.
Properties of Real Numbers CommutativeAssociativeDistributive Identity + × Inverse + ×
FACTORING ax2 + bx + c Think “unfoil” Work down, Show all steps.
1 Approximability Results for Induced Matchings in Graphs David Manlove University of Glasgow Joint work with Billy Duckworth Michele Zito Macquarie University.
Lecture 11 Overview Self-Reducibility. Overview on Greedy Algorithms.
1 Outline relationship among topics secrets LP with upper bounds by Simplex method basic feasible solution (BFS) by Simplex method for bounded variables.
Online and Offline Selling in Limit Order Markets Aaron Johnson Yale University Kevin Chang Yahoo! Inc. Workshop on Internet and Network Economics December,
REVIEW: Arthropod ID. 1. Name the subphylum. 2. Name the subphylum. 3. Name the order.
Break Time Remaining 10:00.
1 Column Generation. 2 Outline trim loss problem different formulations column generation the trim loss problem master problem and subproblem in column.
PP Test Review Sections 6-1 to 6-6
EU market situation for eggs and poultry Management Committee 20 October 2011.
Bright Futures Guidelines Priorities and Screening Tables
Bellwork Do the following problem on a ½ sheet of paper and turn in.
CS 6143 COMPUTER ARCHITECTURE II SPRING 2014 ACM Principles and Practice of Parallel Programming, PPoPP, 2006 Panel Presentations Parallel Processing is.
2 |SharePoint Saturday New York City
Exarte Bezoek aan de Mediacampus Bachelor in de grafische en digitale media April 2014.
VOORBLAD.
Copyright © 2012, Elsevier Inc. All rights Reserved. 1 Chapter 7 Modeling Structure with Blocks.
1 RA III - Regional Training Seminar on CLIMAT&CLIMAT TEMP Reporting Buenos Aires, Argentina, 25 – 27 October 2006 Status of observing programmes in RA.
Factor P 16 8(8-5ab) 4(d² + 4) 3rs(2r – s) 15cd(1 + 2cd) 8(4a² + 3b²)
Basel-ICU-Journal Challenge18/20/ Basel-ICU-Journal Challenge8/20/2014.
1..
CONTROL VISION Set-up. Step 1 Step 2 Step 3 Step 5 Step 4.
© 2012 National Heart Foundation of Australia. Slide 2.
Adding Up In Chunks.
Understanding Generalist Practice, 5e, Kirst-Ashman/Hull
1 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt Synthetic.
Model and Relationships 6 M 1 M M M M M M M M M M M M M M M M
25 seconds left…...
Analyzing Genes and Genomes
©Brooks/Cole, 2001 Chapter 12 Derived Types-- Enumerated, Structure and Union.
Essential Cell Biology
Clock will move after 1 minute
Intracellular Compartments and Transport
PSSA Preparation.
Essential Cell Biology
Immunobiology: The Immune System in Health & Disease Sixth Edition
1 Chapter 13 Nuclear Magnetic Resonance Spectroscopy.
Energy Generation in Mitochondria and Chlorplasts
Select a time to count down from the clock above
Online Node-weighted Steiner Connectivity Problems Vahid Liaghat University of Maryland MohammadTaghi Hajiaghayi (UMD) Debmalya Panigrahi (Duke) 1.
Murach’s OS/390 and z/OS JCLChapter 16, Slide 1 © 2002, Mike Murach & Associates, Inc.
1 Decidability continued…. 2 Theorem: For a recursively enumerable language it is undecidable to determine whether is finite Proof: We will reduce the.
Minimum Vertex Cover in Rectangle Graphs
Reuven Bar-Yehuda Gleb Polevoy Gleb Polevoy Dror Rawitz Technion Technion 1.
ISMP LP Rounding using Fractional Local Ratio Reuven Bar-Yehuda
1 New Developments in the Local Ratio Technique Reuven Bar-Yehuda
A Unified Approach to Approximating Resource Allocation and Scheduling Amotz Bar-Noy.……...AT&T and Tel Aviv University Reuven Bar-Yehuda….Technion IIT.
1 New Developments in the Local Ratio Technique Reuven Bar-Yehuda
LR for Packing problems Reuven Bar-Yehuda
1 A Unified Approach to Approximating Resource Allocation and Scheduling Amotz Bar-Noy.……...AT&T and Tel Aviv University.
A Unified Approach to Approximating Resource Allocation and Scheduling
Presentation transcript:

IBM LP Rounding using Fractional Local Ratio Reuven Bar-Yehuda

IBM General framework: Given a weight vector w. Minimize [Maximize] w·x Subject to:feasibility constraints F(x) x is an r-approximation if F(x) and w·x r w·x* [w·x r w·x* ] An algorithm is an r-approximation if for any w, F it returns an r-approximation

IBM Min 5x Bisli +8x Tea +12x Water +10x Bamba +20x Shampoo +15x Popcorn +6x Chocolate +$4x WaterShampoo + s.t. x Shampoo + x Water + x WaterShampoo $4 $1 $3 $1 $2 $1

IBM The generalized vertex cover problem Minimize w·x Subject to:x u + x v + x e 1 e={u,v} E x {0,1} |V|+|E|

IBM Approx GVC(G,w) If E= return If e E w(e)=0 return {e}+GVC(G-e, w) If v V w(v)=0 return {v}+GVC(G-E(v), w) Let e={u,v} E s.t = min {w(u), w(v), w(e)}>0. if x {u,v,e} 1 w 1 (x) = 0 else Notice:w 1 x 2 w 1 x for Good(x) VC(G, w-w 1 ) REC= GVC(G, w 2 = w-w 1 ) Induction hyp is: w 2 REC 2 w 2 x so if Good(REC): w 1 REC 2 w 1 x we are done If REC-e is a cover thenREC=REC-e If REC-e is a cover thenREC=REC-e Return REC

IBM integral for the price of 1 fractional: The local ratio technique for rounding Let x be the the fractional solution Minimize w·x Subject to:x u + x v + x e 1 e=(u,v) E x [0,1] |V|+|E|

IBM d integral for the price of fractional: 2-2/(Δ+1)-Approx GVC(G,w)d integral for the price of ½(d+1) fractional: 2-2/(Δ+1)-Approx GVC(G,w) If E= return If e E w(e)=0 return {e}+GVC(G-e, w) If v V w(v)=0 return {v}+GVC(G-E(v)-v, w) Let v V s.t x v is minimum and Let =min(w(i) : i N[v]} if i N[v] 1 w 1 (i) = 0 else Claim:w 1 x r Δ w 1 x for Good(x) VC(G, w-w 1 ) REC= GVC(G, w 2 = w-w 1 ) Induction hyp is: w 2 REC r Δ w 2 x so if Good(REC): w 1 REC r Δ w 1 x we are done If REC is not a minimal cover then make REC minimal If REC is not a minimal cover then make REC minimal Return REC Min x v

IBM d integral for the price of fractional:d integral for the price of ½(d+1) fractional: Claim: w 1 x r Δ w 1 x for Good(x) Min x v If Min x v ½ Then x (N[v]) ½(d+1) Else x (N[v]) ½(d+1) Thus w 1 x ½(d+1) But w 1 x d Hence : w 1 x/ w 1 x 2-2/(d+1) Δ 2-2/( Δ +1) = r Δ

IBM A Generalized Local-Ratio Schema for M inimization [ M aximization] problems: Let x be any fisible? vector (e.g. an optimal solution) Algorithm r-ApproxMin [Max](Set, w) If Set = then return ; If v Set w(v) = 0 then return {v} r-ApproxMin(Set-{v},w ) ; [If v Set w(v) 0 then return r-ApproxMax(Set-{v},w ) ;] Define good w 1 ; i.e. Good(x): w 1 x [ ] r w 1 x REC = r-ApproxMin [Max](Set, w 2 ) ; Induction hyp is: w 2 REC [ ] r w 2 x so if Good(REC): w 1 REC [ ] r w 1 x we are done, otherwise fix it; return REC;

IBM The maximum independent set problem Maximize w·x Subject to:x u + x v 1 e=(u,v) E x {0,1} |V|

IBM The maximum independent set problem 1 integral for the gain of r fractional: Let x be the the fractional solution Maximize w·x Subject to:x u + x v 1 e=(u,v) E x [0,1] |V|

IBM Gain 1 integral, lose fractional 2/(Δ+1)-Approx IS(G,w) Gain 1 integral, lose ½(d+1) fractional 2/(Δ+1)-Approx IS(G,w) If v V w(v) 0 return IS(G-v, w) If E= return V Let v V s.t x v is maximum and Let = w(v) if i N[v] 1 w 1 (i) = 0 else Claim:w 1 x r Δ w 1 x for Good(x) (G, w-w 1 ) REC= IS(G, w 2 = w-w 1 ) Induction hyp is: w 2 REC r Δ w 2 x so if Good(REC): w 1 REC r Δ w 1 x we are done If REC+v is an independent set then REC=REC+v If REC+v is an independent set then REC=REC+v Return REC Max x v

IBM Gain 1 integral, lose fractional Gain 1 integral, lose ½(d+1) fractional Claim: w 1 x r Δ w 1 x for Good(x) Max x v If Max x v ½ Then x (N[v]) ½(d+1) Else x (N[v]) ½(d+1) Thus w 1 x ½(d+1) But w 1 x Hens : w 1 x/ w 1 x 2/(d+1) Δ 2/( Δ +1) = r Δ

IBM Single Machine Scheduling : Activity9 Activity8 Activity7 Activity6 Activity5 Activity4 Activity3 Activity2 Activity1 ????????????? time Maximize s.t. For each instance I: For each time t: For each activity A: Bar-Noy, Guha, Naor and Schieber STOC 99: 1/2 LP Berman, DasGupta, STOC 00: 1/2 Bar-Noy at al, STOC 00 1/2

IBM Î, and the weight decomposition: Let Î be the interval which ends first. I in conflict with Î, Define w 1 (I) = w 2 = w-w 1 0 otherwise, w 1 = w 1 = 0 time Activity9 Activity8 Activity7 Activity6 Activity5 Activity4 Activity3 Activity2 Activity1

IBM approximation for 2 Dimentional Interval graphs

IBM approximation for 2 Dimentional Interval graphs

IBM approximation for 2 Dimentional Interval graphs

IBM approximation for 2 Dimentional Interval graphs

IBM approximation for 2 Dimentional Interval graphs

IBM t-approximation for t- Dimentional Interval graphs

IBM t-approximation for t-Interval Graphs Maximize w·x Subject to: v C x v 1 C Clique x {0,1} |V|

IBM t-approximation for t- Interval Graphs finding x Maximize w·x Subject to: v C x v 1 C Interval Clique x [0,1] |V| e.g. x 1 +x 4 +x 5 1

IBM t-approximation for t- Interval Graphs finding more relaxed x Maximize w·x Subject to: v C x v t C t-Interval Clique x [0,1] |V| e.g. x 1 +x 3 +x 4 +x 5 3

IBM Gain 1 integral, lose fractional 1/(2t)-Approx IS(G,w) Gain 1 integral, lose 2 t fractional 1/(2t)-Approx IS(G,w) If v V w(v) 0 return IS(G-v, w) If E= return V Let v V s.t x (N[v]) is minimum and Let = w(v) if i N[v] 1 w 1 (i) = 0 else Claim:w 1 x r t w 1 x for Good(x) (G, w-w 1 ) REC= IS(G, w 2 = w-w 1 ) Induction hyp is: w 2 REC r t w 2 x so if Good(REC): w 1 REC r t w 1 x we are done If REC+v is an independent set then REC=REC+v If REC+v is an independent set then REC=REC+v Return REC Min x (N[v]) 2t

IBM Gain 1 integral, lose fractional Gain 1 integral, lose 2t fractional Claim: w 1 x r t w 1 x for Good(x) Min x (N[v]) We need to show that (next slide) x (N[v]) 2t Thus w 1 x 2t But w 1 x 1 Hence : w 1 x/ w 1 x /(2t ) = r t

IBM Claim: v u N[v] x u 2t Define a directed graph G(V,E) V = Set of t-splits E = {i j : A right endpoind of i hits interval j} Define x ij = x i x j y i + = i j x ij and y i - = j i x ji Thus y i + t x i i y i = i y i + + i y i - 2t i x i Thus i y i 2t x i and therefore i i-j x j 2t

IBM t-apx for t-Interval Graphs with demands finding x Maximize w·x Subject to: v C d v x v 1 C Interval Clique x [0,1] |V| e.g. d 1 x 1 +d 4 x 4 +d 5 x 5 1

IBM t-Interval Graphs with demands 6t = ( fat ) 2t +( thin ) 4t (Assign z i =d i x i ) R.Bar-Yehuda and D. Rawitz. ESA2005 and Discrete Optimization 2006.

IBM Dimentional Interval graphs rectangles packing

IBM MIS on axix-parallel rectangles: NP-Hard even on unit squares [Asano91] Divide and conquare O(logn)-apx [AKS98] PTAS where all heights are the same [AKS98] log(n)/ apx for any constant [BDMR01] 4c-apx where c=max #rects covering a point [LNO04] 12c-apx with demands [Rawitz06]

IBM c-apx Liane Lewin-Eytan, Joseph (Seffi) Naor, and Ariel Orda1 Admission Control in Networks with Advance Reservations Algorithmica (2004) 40: 293–304

IBM c-apx for rectangle packing Types of intersections: Stabbing: Crossing:

IBM c-apx for rectangle packing. Result: 4c -apx Algorithm: Partition the input into c crossing free sets Apply 4 -apx for each and pick the maximum.

IBM MIS on axix-parallel rectangles 4-approximation for MIS on axix-parallel rectangles finding x Maximize w·x Subject to: v C x v 1 C right upper corner Clique x [0,1] |V| e.g. x 1 +x 3 +x

IBM MIS on axix-parallel rectangles 4-approximation for MIS on axix-parallel rectangles finding more relaxed x Maximize w·x Subject to: v C x v 2 C right segment Cliques x [0,1] |V| e.g. x 1 +x 3 +x 4 +x

IBM Gain 1 integral, lose fractional Gain 1 integral, lose 4 fractional 4-apx for crossing free recangles If v V w(v) 0 return IS(G-v, w) If E= return V Let v V s.t x (N[v]) is minimum and Let = w(v) if i N[v] 1 w 1 (i) = 0 else Claim:w 1 x ¼ w 1 x for Good(x) (G, w-w 1 ) REC= IS(G, w 2 = w-w 1 ) Induction hyp is: w 2 REC ¼ w 2 x so if Good(REC): w 1 REC ¼ w 1 x we are done If REC+v is an independent set then REC=REC+v If REC+v is an independent set then REC=REC+v Return REC Min x (N[v])

IBM Claim: v u N[v] x u 4 Define a directed graph G(V,E) V = Set of rectangles E = {i j : Rectangle i right-stubs rectangle j} Define x ij = x i x j y i + = i j x ij and y i - = j i x ji Thus y i + 2*x i i y i = i y i + + i y i - 2*2 i x i Thus i y i 4 x i and therefore i i-j x j 4

IBM Max IS RECT with demand Admission Control with Advance Reservation in Simple Networks Dror Rawitz 2006 Thin: Color with C colors Each factor 8 12c= fat 4c + thin 8c

IBM Thank you !