LISREL matrices, LISREL programming

Slides:



Advertisements
Similar presentations
Jeremy Yorgason Brigham Young University
Advertisements

Writing up results from Structural Equation Models
1 General Structural Equation (LISREL) Models Week 3 #2 A.Multiple Group Models with > 2 groups B.Relationship to ANOVA, ANCOVA models C.Introduction to.
Need to check (e.g., cov) and pretty-up: The LISREL software may be obtained at Other software packages include Eqs (
1 Regression as Moment Structure. 2 Regression Equation Y =  X + v Observable Variables Y z = X Moment matrix  YY  YX  =  YX  XX Moment structure.
SEM PURPOSE Model phenomena from observed or theoretical stances
A. The Basic Principle We consider the multivariate extension of multiple linear regression – modeling the relationship between m responses Y 1,…,Y m and.
General Structural Equations Week 2 #5 Different forms of constraints Introduction for models estimated in multiple groups.
Structural Equation Modeling Mgmt 290 Lecture 6 – LISREL Nov 2, 2009.
Structural Equation Modeling Using Mplus Chongming Yang Research Support Center FHSS College.
General Structural Equation (LISREL) Models
Structural Equation Modeling
Confirmatory Factor Analysis
Sakesan Tongkhambanchong, Ph.D.(Applied Behavioral Science Research) Faculty of Education, Burapha University.
1 General Structural Equation (LISREL) Models Week #2 Class #2.
Structural Equation Modeling Mgmt 291 Lecture 8 – Model Diagnostics And Model Validation Nov. 16, 2009.
Slide B.1 LISREL MathematicalMarketing Appendix B: The LISREL Software In this section we will cover how to run LISREL, software designed to run the covariance.
The General LISREL MODEL and Non-normality Ulf H. Olsson Professor of Statistics.
The General LISREL Model Ulf H. Olsson. Making Numbers Loyalty Branch Loan Savings Satisfaction.
GRA 6020 Multivariate Statistics Confirmatory Factor Analysis Ulf H. Olsson Professor of Statistics.
GRA 6020 Multivariate Statistics Factor Analysis and SEM Ulf H. Olsson Professor of Statistics.
Structural Equation Modeling
Linear and generalised linear models
Linear and generalised linear models
Measurement Models and Correlated Errors and Correlated disturbance Terms Ulf H. Olsson Professor of Statistics.
Linear and generalised linear models Purpose of linear models Least-squares solution for linear models Analysis of diagnostics Exponential family and generalised.
LECTURE 16 STRUCTURAL EQUATION MODELING.
GRA 6020 Multivariate Statistics Confirmatory Factor Analysis Ulf H. Olsson Professor of Statistics.
Structural Equation Modeling Continued: Lecture 2 Psy 524 Ainsworth.
Multiple Sample Models James G. Anderson, Ph.D. Purdue University.
Path analysis: Observed variables Much has been written about path analysis; has been around for over 20 years; started in sociology. Usually has been.
Structural Equation Modeling 3 Psy 524 Andrew Ainsworth.
SEM Analysis SPSS/AMOS
Structural Equation Modeling
Confirmatory Factor Analysis Psych 818 DeShon. Purpose ● Takes factor analysis a few steps further. ● Impose theoretically interesting constraints on.
1 General Structural Equation (LISREL) Models Week 1 Class #3.
General Structural Equations (LISREL) Week 3 #4 Mean Models Reviewed Non-parallel slopes Non-normal data.
LISREL: The short course Paul Jose Nov. 8, 15, 22, 29 Victoria University.
CJT 765: Structural Equation Modeling Class 7: fitting a model, fit indices, comparingmodels, statistical power.
1 General Structural Equation (LISREL) Models Week 2 #3 LISREL Matrices The LISREL Program.
ICPSR General Structural Equation Models Week 4 # 3 Panel Data (including Growth Curve Models)
1 General Structural Equations (LISREL) Week 1 #4.
Multivariate Statistics Confirmatory Factor Analysis I W. M. van der Veld University of Amsterdam.
General Structural Equation (LISREL) Models Week 3 # 3 MODELS FOR MEANS AND INTERCEPTS.
Measurement Models: Identification and Estimation James G. Anderson, Ph.D. Purdue University.
G Lecture 81 Comparing Measurement Models across Groups Reducing Bias with Hybrid Models Setting the Scale of Latent Variables Thinking about Hybrid.
CFA: Basics Beaujean Chapter 3. Other readings Kline 9 – a good reference, but lumps this entire section into one chapter.
G Lecture 91 Measurement Error Models Bias due to measurement error Adjusting for bias with structural equation models Examples Alternative models.
SEM Basics 2 Byrne Chapter 2 Kline pg 7-15, 50-51, ,
1 ICPSR General Structural Equation Models Week 4 #4 (last class) Interactions in latent variable models An introduction to MPLUS software An introduction.
Social Capital [III] Exercise for the Research Master Multivariate Statistics W. M. van der Veld University of Amsterdam.
Structural Equation Modeling Mgmt 291 Lecture 3 – CFA and Hybrid Models Oct. 12, 2009.
1 General Structural Equation (LISREL) Models Week 4 #1 Non-normal data: summary of approaches Missing data approaches: summary, review and computer examples.
Simple and multiple regression analysis in matrix form Least square Beta estimation Beta Simple linear regression Multiple regression with two predictors.
The SweSAT Vocabulary (word): understanding of words and concepts. Data Sufficiency (ds): numerical reasoning ability. Reading Comprehension (read): Swedish.
Donde Esta Lisrel. ssicentral
Advanced Statistical Methods: Continuous Variables
Structural Equation Modeling using MPlus
CJT 765: Structural Equation Modeling
Using AMOS With SPSS Files.
MKFM6: multivariate stationary state-space time-series
(Re)introduction to Mx Sarah Medland
Structural Equation Modeling
5.4 General Linear Least-Squares
Vectors and Matrices In MATLAB a vector can be defined as row vector or as a column vector. A vector of length n can be visualized as matrix of size 1xn.
Confirmatory Factor Analysis
General Structural Equation (LISREL) Models
Exploratory Factor Analysis. Factor Analysis: The Measurement Model D1D1 D8D8 D7D7 D6D6 D5D5 D4D4 D3D3 D2D2 F1F1 F2F2.
Causal Relationships with measurement error in the data
Autoregressive and Growth Curve Models
Presentation transcript:

LISREL matrices, LISREL programming ICPSR General Structural Equations Week 2 Class #4

Class Exercise (from previous class notes:)

Class exercise BETA 2 x 2 0 BE(1,2) BE(2,1) 0 PHI 2 X 2 PHI(1,1) GAMMA 2 X 2 GA(1,1) 0 0 GA(2,2) PSI 2 x 2 PS(1,1) PS(2,1) PS(2,2)

LAMBDA-X 1 0 LX(2,1) 0 LX(3,1) LX(3,2) 0 1 0 LX(5,2) LAMBDA-Y 1 0 LY(2,1) 0 LY(3,1) 0 0 1 0 LY(5,2) 0 LY(6,2)

MO NY=6 NX=5 NK=2 NE=2 LX=FU,FI LY=FU,FI C PH=SY BE=FU,FI GA=FU,FI TD=SY TE=SY PS=SY,FR VA 1.0 LX 1 1 LX 4 2 LY 1 1 LY 4 2 FR LX 2 1 LX 3 1 LX 3 2 LX 5 2 LY 2 1 LY 3 1 LY 5 2 LY 6 2 FR GA 1 1 GA 2 2 FR BE 2 1 BE 1 2

Exercise 2:A (PANEL) MODEL WITH CORRELATED ERRORS

Exercise 2:A (PANEL) MODEL WITH CORRELATED ERRORS Beta 2 x 2 0 0 BE(2,1) 0 PSI 2 x 2 PS(1,1) 0 PS(2,2) Not shown: zeta1 Theta-eps TE(1,1) 0 TE(2,2) 0 0 TE(3,3) TE(4,1) 0 0 TE(4,4) 0 TE(5,2) 0 0 TE(5,5) 0 0 0 0 0 TE(6,6)

Exercise 2:A (PANEL) MODEL WITH CORRELATED ERRORS MO NY=6 NE=2 LY=FU,FI PS=SY TE=SY BE=FU,FI VA 1.0 LY 1 1 LY 4 2 FR LY 2 1 LY 3 1 LY 5 2 LY 6 2 FR BE 2 1 FR TE 4 1 TE 5 2 Notes: PS=SY specification  free diagonals (PS(1,1) and PS(2,2), fixed off-diagonals [ps(2,1)=0 in this model].

Exercise 3

Exercise 3 BETA 2 X 2 0 0 BE(2,1) 0 LAMBDA-Y 1 0 LY(2,1) 0 Gamma 2 x 1 0 0 BE(2,1) 0 LAMBDA-Y 1 0 LY(2,1) 0 LY(3,1) LY(3,2) 0 1 0 LY(5,2) Gamma 2 x 1 GA(1,1) LAMBDA-X 1 X 1 1

Exercise 3 MO NX=1 NY=5 NK=1 NE=2 LX=ID LY=FU,FI C PS=SY PH=SY TD=ZE TE=SY BE=FU,FI GA=FU,FI VA 1.0 LY 1 1 LY 4 2 FR LY 2 1 LY 3 1 LY 3 2 LY 5 2 FR GA 1 1 BE 2 1

Exercise 4 This is a non-standard model.

Exercise 4 This parameter cannot be estimated in LISREL; must re-express the model (to an equivalent that CAN be estimated)

RE-EXPRESSED MODEL LAMBDA – Y BETA 1 0 0 BE(1,2) LY(2,1) 0 0 0 1 0 LY(2,1) 0 LY(3,1) 0 LY(4,1) 0 0 1 BETA 0 BE(1,2) 0 0

RE-EXPRESSED MODEL Now X1,X2 MO NY=5 NX=2 NK=1 NE=2 LY=FU,FI LX=FU,FR C GA=FU,FR PS=SY PH=SY TD=SY TE=SY VA 1.0 LX 1 1 LY 1 1 LY 5 2 FR LX 2 1 LY 2 1 LY 3 1 LY 4 1 FI TE 5 5  SINGLE INDICATOR, CANNOT ESTIMATE ERROR

Re-expressed as: e3 variance=0 Same variance as e3 in previous model Same as lambda parameter in previous model

The same sort of principle can be used for other purposes too: Imposing an inequality constraint. Example: We wish to impose a constraint such that VAR(e3) > 0 (don’t allow negative error variance).

Lambda 2, lambda 3: same parm’s Variance of ksi-2 fixed to 1.0 X3 = lambda3 KSI1 + lambda4 KSI2 VAR(X3) = lambda32*VAR(Ksi-1) + lambda42 *VAR(KSI-2) Since…..VAR(ksi-2) = 1.0 [expression lambda42 replaces VAR(e3) Regardless of estimate of lambda4, variance >0.

The LISREL PROGRAM: MO modelparameters statement FR free a parameter FI fix a parameter VA set a parameter to a value (if the parameter is free, this is the “start value” to override program default estimate; otherwise, it is the value to which a parameter is constrained

The LISREL PROGRAM: If reading in a “system” .dsf file created by prelis: Title SY= input file if LISREL .dsf DA - dataparameters SE selection of variables MO – modelparameters … various FI and FR statements OU – outputparameters (see handout)

The LISREL PROGRAM: ! Achievement Values Program #1 SY='z:\baer\Week2Examples\LISREL\Achieve1.dsf' SE REDUCE NEVHAPP NEW_GOAL IMPROVE ACHIEVE CONTENT / MO NY=6 NE=1 LY=FU,FR PS=SY TE=SY FI LY 1 1 VA 1.0 LY 1 1 OU ME=ML SC MI SE statement lists variables to be used (always specify Y variables first) can change order on SE statement. Here, REDUCE is Y1, NEVHAPP is Y2, etc. LY 1 1 refers to REDUCE. OU : ME=ML (maximum likelihood) SC (standardized solution) MI (provide modification indices)

LISREL Output: Parameter Specifications LAMBDA-Y ETA 1 -------- REDUCE 0 NEVHAPP 1 NEW_GOAL 2 IMPROVE 3 ACHIEVE 4 CONTENT 5 PSI 6 THETA-EPS REDUCE NEVHAPP NEW_GOAL IMPROVE ACHIEVE CONTENT -------- -------- -------- -------- -------- -------- 7 8 9 10 11 12 Reference indicator is “fixed” All fixed parameters represented by 0. Theta-eps is diagonal

LISREL Output LISREL Estimates (Maximum Likelihood) LAMBDA-Y ETA 1 -------- REDUCE 1.00 NEVHAPP 2.14 (0.37) 5.72 NEW_GOAL -2.76 (0.46) -6.00 IMPROVE -4.23 (0.70) -6.01 ACHIEVE -2.64 (0.45) -5.87 CONTENT 2.66 5.78

LISREL Output Covariance Matrix of ETA ETA 1 -------- 0.01 PSI (0.00) 3.08 THETA-EPS REDUCE NEVHAPP NEW_GOAL IMPROVE ACHIEVE CONTENT -------- -------- -------- -------- -------- -------- 0.53 0.38 0.19 0.21 0.36 0.50 (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) 38.84 36.44 28.79 18.92 34.53 35.92 Squared Multiple Correlations for Y - Variables 0.02 0.11 0.29 0.46 0.17 0.13

LISREL Output Modification Indices and Expected Change No Non-Zero Modification Indices for LAMBDA-Y No Non-Zero Modification Indices for PSI Modification Indices for THETA-EPS REDUCE NEVHAPP NEW_GOAL IMPROVE ACHIEVE CONTENT -------- -------- -------- -------- -------- -------- REDUCE - - NEVHAPP 323.45 - - NEW_GOAL 24.46 4.29 - - IMPROVE 92.13 52.90 87.29 - - ACHIEVE 19.12 48.71 0.97 33.31 - - CONTENT 170.74 243.43 58.94 21.28 1.82 - - Expected Change for THETA-EPS NEVHAPP 0.15 - - NEW_GOAL 0.03 0.01 - - IMPROVE 0.08 0.06 0.10 - - ACHIEVE 0.04 0.05 0.01 0.06 - - CONTENT 0.13 0.14 0.06 0.05 0.01 - - Completely Standardized Expected Change for THETA-EPS NEVHAPP 0.32 - - NEW_GOAL 0.09 0.04 - - IMPROVE 0.18 0.15 0.29 - - ACHIEVE 0.08 0.12 0.02 0.14 - - CONTENT 0.23 0.27 0.14 0.10 0.02 - - Maximum Modification Index is 323.45 for Element ( 2, 1) of THETA-EPS

Lisrel program input SE 2 3 6 9 8 7 / If reading in a covariance matrix generated by PRELIS instead of a .dsf file: DA NO=# cases NI=# of input var’s MA=CM {MA = type of matrix to be analyzed; default = CM, or a covariance matrix} CM FI=‘c:\file1.cov’ input file specification(cov) SE 2 3 6 9 8 7 / Selection: corresponds to order in which variables located on input covariance matrix (3rd variable on the matrix is now Y2).

Another LISREL example: ! Achievement Values Program #8: Adding One Extra Measurement Model Path SY='z:\baer\Week2Examples\LISREL\Achieve1.dsf' SE REDUCE NEVHAPP NEW_GOAL IMPROVE ACHIEVE CONTENT GENDER AGE EDUC INCOME/ MO NX=4 NK=4 NY=6 NE=2 LX=ID PH=SY,FR TD=ZE LY=FU,FI C PS=SY,FR TE=SY GA=FU,FR FI LY 2 1 FI LY 3 2 VA 1.0 LY 2 1 LY 3 2 FR LY 1 1 LY 6 1 LY 4 2 LY 5 2 FR LY 1 2 PD OU ME=ML SE TV SC MI

(from output listing) Parameter Specifications LAMBDA-Y ETA 1 ETA 2 -------- -------- REDUCE 1 2 NEVHAPP 0 0 NEW_GOAL 0 0 IMPROVE 0 3 ACHIEVE 0 4 CONTENT 5 0 GAMMA GENDER AGE EDUC INCOME -------- -------- -------- -------- ETA 1 6 7 8 9 ETA 2 10 11 12 13 PHI GENDER 14 AGE 15 16 EDUC 17 18 19 INCOME 20 21 22 23 PSI ETA 1 24 ETA 2 25 26 THETA-EPS REDUCE NEVHAPP NEW_GOAL IMPROVE ACHIEVE CONTENT -------- -------- -------- -------- -------- -------- 27 28 29 30 31 32

(output) LISREL Estimates (Maximum Likelihood) LAMBDA-Y ETA 1 ETA 2 -------- -------- REDUCE 1.13 0.65 (0.07) (0.08) 17.32 8.53 NEVHAPP 1.00 - - NEW_GOAL - - 1.00 IMPROVE - - 1.85 (0.12) 16.00 ACHIEVE - - 0.99 (0.06) 15.95 CONTENT 1.16 - - 19.84 GAMMA GENDER AGE EDUC INCOME -------- -------- -------- -------- ETA 1 0.02 -0.01 0.03 0.01 (0.02) (0.00) (0.00) (0.00) 1.14 -10.40 10.04 5.67 ETA 2 0.07 0.00 0.01 0.00 (0.01) (0.00) (0.00) (0.00) 4.90 4.81 4.19 -0.79

Squared Multiple Correlations for Structural Equations Covariance Matrix of ETA and KSI ETA 1 ETA 2 GENDER AGE EDUC INCOME -------- -------- -------- -------- -------- -------- ETA 1 0.15 ETA 2 -0.04 0.07 GENDER -0.01 0.02 0.25 AGE -2.25 0.37 -0.08 269.69 EDUC 0.53 0.06 -0.07 -18.55 13.75 INCOME 0.47 -0.08 -0.98 -15.71 5.55 20.57 Squared Multiple Correlations for Structural Equations ETA 1 ETA 2 -------- -------- 0.22 0.03

(LISREL output) Modification Indices and Expected Change Modification Indices for LAMBDA-Y ETA 1 ETA 2 -------- -------- REDUCE - - - - NEVHAPP - - 3.55 NEW_GOAL 4.90 - - IMPROVE 0.84 - - ACHIEVE 2.18 - - CONTENT - - 3.55

Completely Standardized Solution LAMBDA-Y ETA 1 ETA 2 -------- -------- REDUCE 0.59 0.24 NEVHAPP 0.59 - - NEW_GOAL - - 0.52 IMPROVE - - 0.79 ACHIEVE - - 0.41 CONTENT 0.59 - - GAMMA GENDER AGE EDUC INCOME -------- -------- -------- -------- ETA 1 0.03 -0.25 0.25 0.15 ETA 2 0.12 0.11 0.10 -0.02 (could have used LA (labels) statement to provide labels for these latent variables)

Reproduced covariances in matrix form First examples are for SEM models that are “manifest variable only” – no latent variables.

Manifest variables only

Manifest variables only

Manifest variables only Previous example had no paths connecting endogenous y-variables (no “Beta” matrix). A bit more complicated with these included:

Manifest variables only With Beta matrix:

Manifest variables only

Manifest variables only

Manifest variables only

Manifest variables only

Latent variables included Measurement model only

Latent variables included

δ

(last slide)