Games & Adversarial Search

Slides:



Advertisements
Similar presentations
Chapter 6, Sec Adversarial Search.
Advertisements

Adversarial Search Chapter 6 Sections 1 – 4. Outline Optimal decisions α-β pruning Imperfect, real-time decisions.
Adversarial Search Chapter 6 Section 1 – 4. Types of Games.
Games & Adversarial Search Chapter 5. Games vs. search problems "Unpredictable" opponent  specifying a move for every possible opponent’s reply. Time.
February 7, 2006AI: Chapter 6: Adversarial Search1 Artificial Intelligence Chapter 6: Adversarial Search Michael Scherger Department of Computer Science.
Games & Adversarial Search
Adversarial Search Chapter 6 Section 1 – 4. Warm Up Let’s play some games!
CSC 8520 Spring Paula Matuszek CS 8520: Artificial Intelligence Solving Problems by Searching Paula Matuszek Spring, 2010 Slides based on Hwee Tou.
Adversarial Search Chapter 6 Section 1 – 4.
Adversarial Search Chapter 5.
COMP-4640: Intelligent & Interactive Systems Game Playing A game can be formally defined as a search problem with: -An initial state -a set of operators.
1 Game Playing. 2 Outline Perfect Play Resource Limits Alpha-Beta pruning Games of Chance.
Adversarial Search CSE 473 University of Washington.
Adversarial Search Chapter 6.
Artificial Intelligence for Games Game playing Patrick Olivier
Adversarial Search 對抗搜尋. Outline  Optimal decisions  α-β pruning  Imperfect, real-time decisions.
An Introduction to Artificial Intelligence Lecture VI: Adversarial Search (Games) Ramin Halavati In which we examine problems.
1 Adversarial Search Chapter 6 Section 1 – 4 The Master vs Machine: A Video.
EIE426-AICV 1 Game Playing Filename: eie426-game-playing-0809.ppt.
G51IAI Introduction to AI Minmax and Alpha Beta Pruning Garry Kasparov and Deep Blue. © 1997, GM Gabriel Schwartzman's Chess Camera, courtesy IBM.
Minimax and Alpha-Beta Reduction Borrows from Spring 2006 CS 440 Lecture Slides.
UNIVERSITY OF SOUTH CAROLINA Department of Computer Science and Engineering CSCE 580 Artificial Intelligence Ch.6: Adversarial Search Fall 2008 Marco Valtorta.
Games & Adversarial Search Chapter 6 Section 1 – 4.
Game Playing State-of-the-Art  Checkers: Chinook ended 40-year-reign of human world champion Marion Tinsley in Used an endgame database defining.
1 Game Playing Why do AI researchers study game playing? 1.It’s a good reasoning problem, formal and nontrivial. 2.Direct comparison with humans and other.
Adversarial Search Chapter 6 Section 1 – 4. Outline Optimal decisions α-β pruning Imperfect, real-time decisions.
Introduction to Artificial Intelligence CS 438 Spring 2008 Today –AIMA, Ch. 6 –Adversarial Search Thursday –AIMA, Ch. 6 –More Adversarial Search The “Luke.
1 Adversarial Search CS 171/271 (Chapter 6) Some text and images in these slides were drawn from Russel & Norvig’s published material.
Adversarial Search Chapter 6 Section 1 – 4. Search in an Adversarial Environment Iterative deepening and A* useful for single-agent search problems What.
Adversarial Search Chapter Games vs. search problems "Unpredictable" opponent  specifying a move for every possible opponent reply Time limits.
Paula Matuszek, CSC 8520, Fall Based in part on aima.eecs.berkeley.edu/slides-ppt 1 CS 8520: Artificial Intelligence Adversarial Search Paula Matuszek.
Turn-Based Games Héctor Muñoz-Avila sources: Wikipedia.org Russell & Norvig AI Book; Chapter 5 (and slides)
Adversarial Search Chapter 6 Section 1 – 4. Games vs. search problems "Unpredictable" opponent  specifying a move for every possible opponent reply Time.
Explorations in Artificial Intelligence Prof. Carla P. Gomes Module 5 Adversarial Search (Thanks Meinolf Sellman!)
Adversarial Search Chapter 5 Sections 1 – 4. AI & Expert Systems© Dr. Khalid Kaabneh, AAU Outline Optimal decisions α-β pruning Imperfect, real-time decisions.
Chapter 5: Adversarial Search & Game Playing
ADVERSARIAL SEARCH Chapter 6 Section 1 – 4. OUTLINE Optimal decisions α-β pruning Imperfect, real-time decisions.
1 Chapter 6 Game Playing. 2 Chapter 6 Contents l Game Trees l Assumptions l Static evaluation functions l Searching game trees l Minimax l Bounded lookahead.
5/4/2005EE562 EE562 ARTIFICIAL INTELLIGENCE FOR ENGINEERS Lecture 9, 5/4/2005 University of Washington, Department of Electrical Engineering Spring 2005.
Artificial Intelligence AIMA §5: Adversarial Search
Game Playing Why do AI researchers study game playing?
Adversarial Search and Game-Playing
Games and adversarial search (Chapter 5)
Game Playing Why do AI researchers study game playing?
EA C461 – Artificial Intelligence Adversarial Search
Announcements Homework 1 Full assignment posted..
4. Games and adversarial search
Last time: search strategies
PENGANTAR INTELIJENSIA BUATAN (64A614)
Games and adversarial search (Chapter 5)
CS 460 Spring 2011 Lecture 4.
Adversarial Search and Game Playing (Where making good decisions requires respecting your opponent) R&N: Chap. 6.
Pengantar Kecerdasan Buatan
Adversarial Search Chapter 5.
Games & Adversarial Search
Games & Adversarial Search
Adversarial Search.
Artificial Intelligence
Game playing.
Games & Adversarial Search
Artificial Intelligence
Game Playing Fifth Lecture 2019/4/11.
Artificial Intelligence
Games & Adversarial Search
Adversarial Search CMPT 420 / CMPG 720.
Adversarial Search CS 171/271 (Chapter 6)
Minimax strategies, alpha beta pruning
Games & Adversarial Search
Adversarial Search Chapter 6 Section 1 – 4.
Presentation transcript:

Games & Adversarial Search Chapter 6 Section 1 – 4

Games vs. search problems "Unpredictable" opponent  specifying a move for every possible opponent’s reply. Time limits  unlikely to find goal, one must approximate

Game tree (2-player, deterministic, turns) How do we search this tree to find the optimal move?

Minimax Idea: choose a move to a position with the highest minimax value = best achievable payoff against a rational opponent. Example: deterministic 2-ply game: minimax value Minimax value is computed bottom up: -Leaf values are given. -3 is the best outcome for MIN in this branch. for MAX in this game. -We explore this tree in depth-first manner.

Properties of minimax Complete? Yes (if tree is finite) Optimal? Yes (against an rational opponent) Time complexity? O(bm) Space complexity? O(bm) (depth-first exploration) For chess, b ≈ 35, m ≈100 for "reasonable" games  exact solution completely infeasible

Pruning Do we need to expand all nodes? 2. No: We can do better by pruning branches that will not lead to success.

α-β pruning example MAX knows that it can at least get “3” by playing this branch MIN will choose “3”, because it minimizes the utility (which is good for MIN)

α-β pruning example MAX knows that the new branch will never be better than 2 for him. He can ignore it. MIN can certainly do as good as 2, but maybe better (= smaller)

α-β pruning example MIN will do at least as good as 14 in this branch (which is very good for MAX!) so MAX will want to explore this branch more.

α-β pruning example MIN will do at least as good as 5 in this branch (which is still good for MAX) so MAX will want to explore this branch more.

α-β pruning example Bummer (for MAX): MIN will be able to play this last branch and get 2. This is worse than 3, so MAX will play 3.

Properties of α-β Pruning does not affect final result (it is exact). Good move ordering improves effectiveness of pruning (see last branch in example) With "perfect ordering," time complexity = O(bm/2)  doubles depth of search

The Algorithm Visit the nodes in a depth-first manner Maintain bounds on nodes. A bound may change if one of its children obtains a unique value. A bound becomes a unique value when all its children have been checked or pruned. When a bound changes into a tighter bound or a unique value, it may become inconsistent with its parent. When an inconsistency occurs, prune the sub-tree by cutting the edge between the inconsistent bounds/values.  This is like propagating changes bottom-up in the tree.

Try it yourself -which nodes can be pruned? -always try going right before going left. -maintain bounds! 6 5 3 4 1 2 7 8

Practical Implementation How do we make this practical? Standard approach: cutoff test: (where do we stop descending the tree) depth limit better: iterative deepening cutoff only when no big changes are expected to occur next (quiescence search). evaluation function When the search is cut off, we evaluate the current state by estimating its utility. This estimate if captured by the evaluation function.

Eval(s) = w1 f1(s) + w2 f2(s) + … + wn fn(s) Evaluation functions For chess, typically linear weighted sum of features Eval(s) = w1 f1(s) + w2 f2(s) + … + wn fn(s) e.g., w1 = 9 with f1(s) = (number of white queens) – (number of black queens), etc.

Deterministic games in practice Checkers: Chinook ended 40-year-reign of human world champion Marion Tinsley in 1994. Chess: Deep Blue defeated human world champion Garry Kasparov in a six-game match in 1997. Othello: human champions refuse to compete against computers: they are too good. Go: human champions refuse to compete against computers: they are too bad.

Chance Games. Backgammon your element of chance

Expected Minimax Again, the tree is constructed bottom-up. Now we have even more nodes to search!

Summary Games are fun to work on! We search to find optimal strategy perfection is unattainable  approximate Chance makes games even harder