Integrability in the Multi-Regge Regime Volker Schomerus DESY Hamburg Based on work w. Jochen Bartels, Jan Kotanski, Martin Sprenger, Andrej Kormilitzin,

Slides:



Advertisements
Similar presentations
Schrödinger Representation – Schrödinger Equation
Advertisements

Domino Tilings of the Chessboard An Introduction to Sampling and Counting Dana Randall Schools of Computer Science and Mathematics Georgia Tech.
Summing planar diagrams
From weak to strong correlation: A new renormalization group approach to strongly correlated Fermi liquids Alex Hewson, Khan Edwards, Daniel Crow, Imperial.
Giant Magnon and Spike Solutions in String Theories Bum-Hoon Lee Center for Quantum SpaceTime(CQUeST)/Physics Dept. Sogang University, Seoul, Korea PAQFT08,
The Giant Magnon and Spike Solution Chanyong Park (CQUeST) Haengdang Workshop ’07, The Giant Magnon and Spike Solution Chanyong Park.
Chanyong Park 35 th Johns Hopkins Workshop ( Budapest, June 2011 ) Based on Phys. Rev. D 83, (2011) arXiv : arXiv :
Semi-Classical strings as probes of AdS/CFT M. Kruczenski Purdue University Based on: arXiv: R. Roiban, A. Tirziu, A. Tseytlin, M.K. arXiv:
Perturbative Odderon in the Color Glass Condensate
Triumvirate of Running Couplings in Small-x Evolution Yuri Kovchegov The Ohio State University Based on work done in collaboration with Heribert Weigert,
Spiky strings, light-like Wilson loops and a pp-wave anomaly M. Kruczenski Purdue University Based on: arXiv: arXiv: A. Tseytlin, M.K.
Strings in AdS pp-waves M. Kruczenski Purdue University Based on: arXiv: arXiv: A. Tseytlin, M.K. arXiv: arXiv: R. Ishizeki,
Large spin operators in string/gauge theory duality M. Kruczenski Purdue University Based on: arXiv: (L. Freyhult, A. Tirziu, M.K.) Miami 2009.
Entanglement in Quantum Critical Phenomena, Holography and Gravity Dmitri V. Fursaev Joint Institute for Nuclear Research Dubna, RUSSIA Banff, July 31,
Table of contents 1. Motivation 2. Formalism (3-body equation) 3. Results (KNN resonance state) 4. Summary Table of contents 1. Motivation 2. Formalism.
Spiky Strings in the SL(2) Bethe Ansatz
Spiky Strings and Giant Magnons on S 5 M. Kruczenski Purdue University Based on: hep-th/ (Russo, Tseytlin, M.K.)
Strings in AdS pp-waves M. Kruczenski Purdue University Based on: arXiv: A. Tseytlin, M.K. arXiv: R. Ishizeki, A. Tirziu, M.K. + work.
Nikolay Gromov Based on N. G., V. Kazakov, S. Leurent, D. Volin , N. G., F. Levkovich-Maslyuk, G. Sizov, S. Valatka A. Cavaglia,
Integrability and Bethe Ansatz in the AdS/CFT correspondence Konstantin Zarembo (Uppsala U.) Nordic Network Meeting Helsinki, Thanks to: Niklas.
A CLASSICAL ODDERON IN HIGH ENEGY QCD Raju Venugopalan BNL RBRC Workshop, Sept. 27th-29th, 2005.
Nikolay Gromov Based on works with V.Kazakov, S.Leurent, D.Volin F. Levkovich-Maslyuk, G. Sizov Nikolay Gromov Based on works with.
Different faces of integrability in the gauge theories or in hunting for the symmetries Isaac Newton Institute, October 8.
Less is more and more is different. Jorn Mossel University of Amsterdam, ITFA Supervisor: Jean-Sébastien Caux.
Super Yang Mills Scattering amplitudes at strong coupling Juan Maldacena Based on L. Alday & JM arXiv: [hep-th] & to appear Strings 2007, Madrid.
Integrability of N=6 Super Chern-Simons Theories Dongsu Bak University of Seoul with S. J. Rey and D. Kang (KIAS, 9/24/2008) TexPoint fonts used in EMF.
Bootstraps Old and New L. Dixon, J. Drummond, M. von Hippel and J. Pennington 1305.nnnn Amplitudes 2013.
Introduction 2. 2.Limitations involved in West and Yennie approach 3. 3.West and Yennie approach and experimental data 4. 4.Approaches based on.
1 1.Introduction 2.Limitations involved in West and Yennie approach 3.West and Yennie approach and experimental data 4.Approaches based on impact parameter.
Nikolay Gromov Based on N. G., V. Kazakov, S. Leurent, D. Volin , N. G., F. Levkovich-Maslyuk, G. Sizov, S. Valatka A. Cavaglia,
Gauge Theory, Superstrings and Supermagnets Volker Schomerus SYSY Goettingen 2012.
One Dimensional Bosons in a Harmonic trap Sung-po Chao Rutgers University 2008/02/20 Journal club.
Finite N Index and Angular Momentum Bound from Gravity “KEK Theory Workshop 2007” Yu Nakayama, 13 th. Mar (University of Tokyo) Based on hep-th/
1 Integrability in AdS^5 x S_5 string theory: general 1-loop results Based on [N.G., Pedro Vieira] hep-th/ , hep-th/ , to appear.
1 AdS/CFT correspondence and generation of space-time in Matrix models March at KEK Hikaru Kawai arXiv: , , with T. Suyama arXiv: ,
Overview of saturation Yoshitaka Hatta (Saclay) Low-x meeting, 2007, Helsinki.
Minkyoo Kim (Wigner Research Centre for Physics) 9th, September, 2013 Seminar in KIAS.
Dressing factor in integrable AdS/CFT system Dmytro Volin Annecy, 15 April 2010 x x x x x x x x x x x x 2g - 2g x x x x x x x x x x arXiv: arXiv:
Diffraction:An Perspective Diffraction:An Experimental Perspective Andrew Brandt University of Texas, Arlington CTEQ Summer School June 3, Madision,
Blois workshopK. Itakura (CEA/Saclay)1 Perturbative Odderon in the Color Glass Condensate in collaboration with E. Iancu (Saclay), L. McLerran & Y. Hatta.
Hirota solutions of TBA and NLIE Francesco Ravanini Cortona 2010 A.D
Numerical Solution of the Spectral Problem and BFKL at Next-to-Next-to-Leading Order in N=4 SYM Fedor Levkovich-Maslyuk King’s College London based on.
Two scalar fields of the N=4 SYM theory: Long local operators: Can be mapped to the spin chain states: The mixing matrix is an integrable spin chain.
Integrability for the Full Spectrum of Planar AdS/CFT Nikolay Gromov DESY/HU/PNPI V.Kazakov and P.Vieira.
Scattering in Planar N=4 Super-Yang-Mills Theory and the Multi-Regge-Limit Lance Dixon (SLAC) with C. Duhr and J. Pennington, arXiv: ICHEP Melbourne,
Minimal surfaces in AdS 5, Wilson loops and Amplitudes Juan Maldacena.
Heidelberg, June 2008 Volker Schomerus - DESY Hamburg - Of Mesons and Metals – Bethe & the 5th Dimension.
Nonlinear Odderon evolution in the Color Glass Condensate Nonlinear Odderon evolution in the Color Glass Condensate Kazunori Itakura (SPhT, CEA/Saclay)
Relating e+e- annihilation to high energy scattering at weak and strong coupling Yoshitaka Hatta (U. Tsukuba) JHEP 11 (2008) 057; arXiv: [hep-ph]
Lecture III. 5. The Balitsky-Kovchegov equation Properties of the BK equation The basic equation of the Color Glass Condensate - Rapid growth of the.
B.-H.L, R. Nayak, K. Panigrahi, C. Park On the giant magnon and spike solutions for strings on AdS(3) x S**3. JHEP 0806:065,2008. arXiv: J. Kluson,
Solution of the NLO BFKL Equation (and a strategy for solving the all-order BFKL equation) Yuri Kovchegov The Ohio State University based on arXiv:
Causality constraints on graviton three point functions Juan Maldacena Based on: Camanho, Edelstein, JM., Zhiboedov. arXiv:
Effective action for high energy QCD Y.H., Iancu, McLerran, Stasto, Triantafyllopoulos : NPA 764 (2006) Y.H. : NPA 768 (2006); NPA 781 (2007) Yoshitaka.
Gluon Evolution at small-x : Extending the PT Domain of QCD Dimitri Colferai University of Firenze M. Ciafaloni G.P. Salam A.M. Stasto In collaboration.
Andrej Ficnar Columbia University Hard Probes 2010, Eilat, Israel October 12, 2010 Nonconformal Holography of Heavy Quark Quenching Andrej Ficnar, Jorge.
Nikolay Gromov Based on works with V.Kazakov, S.Leurent, D.Volin F. Levkovich-Maslyuk, G. Sizov Nikolay Gromov Based on works with.
Song He Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing.
Condensed matter physics and string theory HARVARD Talk online: sachdev.physics.harvard.edu.
Quantum Mechanical Models for Near Extremal Black Holes
Polylogs for Polygons: Bootstrapping Amplitudes and Wilson Loops in Planar N=4 Super-Yang-Mills Theory Lance Dixon New Directions in Theoretical Physics.
Gauge/String Duality and Integrable Systems
Schrödinger Representation – Schrödinger Equation
QUANTUM TRANSITIONS WITHIN THE FUNCTIONAL INTEGRATION REAL FUNCTIONAL
Algebraic Bethe ansatz for the XXZ Heisenberg spin chain
Exact Results in Massive N=2 Theories
Bootstrapping Six Gluon Scattering in planar N=4 SYM
Schrödinger’s equation for Conformal Symmetry
Paths into Multi-Regge Regions
Strong coupling limit of BES equation in rapidity space
Presentation transcript:

Integrability in the Multi-Regge Regime Volker Schomerus DESY Hamburg Based on work w. Jochen Bartels, Jan Kotanski, Martin Sprenger, Andrej Kormilitzin, , & in preparation Amplitudes 2013, Ringberg

Introduction Goal: Interpolation of scattering amplitudes from weak to strong coupling N=4 SYM: find remainder function R = R (u) cross ratios From successful interpolation of anomalous dimensions String theory in AdS can provide decisive input integrability at weak coupling not enough

Introduction: High Energy limit Main Message: HE limit of remainder R at a= is determined by IR limit of 1D q-integrable system Weak coupl: HE limit computable integrability BFKL,BKP TBA integral eqs algebraic BA eqs e.g. Useful to consider kinematical limits: here HE limit [ Severs talk]

Main Result and Plan 1. Multi-Regge kinematics and regions 2. Multi-Regge limit at weak coupling (N)LLA and (BFKL) integrability, n=6,7,8… 3. Multi-Regge limit at strong coupling MRL as low temperature limit of TBA Mandelstam cuts & excited state TBA Formulas for MRL of R n,n=6,7 at a= Cross ratios, MRL and regions

Kinematics

1.1 Kinematical invariants t1t1 t2t2 t 4 s4s4 s s 12 s n – 2 = 5 production amplitude t 3 s3s3 s2s2 s1s1 ½ (n 2 -3n) Mandelstam invariants

1.1 Kinematical invariants

1.2 Kinematics: Cross Ratios u 31 u 32 u 11 u 12 u 22 u 21 u ½ (n 2 -5n) basic cross ratios (tiles) 3(n-5) fundamental cross ratios from Gram det

1.3 Kinematics: Multi-Regge Limit -t i << s i x ij s i-1..s j-3 small large larger

1.4 Multi-Regge Regions 2 n-4 regions depending on the sign of k i0 = E i u 2σ > 0 u 3σ > 0 u 2σ < 0 u 3σ < 0 s 1 < 0 s 12 > 0 s 123 < 0 s 4 < 0 s 34 > 0 s 234 < 0 s 1 > 0 s 12 > 0 s 123 > 0 s 4 > 0 s 34 > 0 s 234 > 0

Weak Coupling

Weak Coupling: 6-gluon 2-loop [Lipatov,Prygarin] 2-loop n=6 remainder function R (2) (u 1,u 2,u 3 ) known [Del Duca et al.] [Goncharov et al.] leading log discontinuity Continue cross ratios along MHV

Leading log approximation LLA The (N)LLA for can be obtained from Impact factor Φ & BFKL eigenvalue ω known in (N)LLA Explicit formulas for R in (N)LLA derived to 14(9) loops [Dixon,Duhr,Pennington] all loop LLA proposal using SVHP[Pennington] [Bartels, Lipatov,Sabio Vera] [Fadin,Lipatov] LLA: [Bartels et al.] ([Lipatov,Prygarin])

H 2 and its multi-site extension BKP Hamiltonian are integrable LLA and integrability [Faddeev, Korchemsky] ω(ν,n) eigenvalues of `color octet BFKL Hamiltonian BFKL Greens fct in s 2 discontinuity wave fcts of 2 reggeized gluons [Lipatov] integrability in color singlet case = XXX spin chain H 2 = h + h *

Beyond 6 gluons - LLA n=7: Four interesting regions (N)LLA remainder involves the same BFKL ω(ν,n) as for n = 6 [Bartels, Kormilitzin,Lipatov,Prygarin] n=8: Eleven interesting regions Including one that involves the Eigenvalues of 3-site spin chain ? paths

Strong Coupling

3.1 Strong Coupling: Y-System Scattering amplitude Area of minimal surface [Alday,Gaiotto, Maldacena][Alday,Maldacena,Sever,Vieira] A=(a,s) a=1,2,3; s = 1, …, n-5`particle densities rapidity R = free energy of 1D quantum system involving 3n-15 particles [m A,C A ] with integrable interaction [K AB S AB ] complex masseschemical potentials R = R(u) = R(m(u),C(u)) by inverting R Wall crossing & cluster algebras

3.2 TBA: Continution & Excitations [Dorey, Tateo] Continue m along a curve in complex plane to m R Solutions of = poles in integrand sign contribution from excitations Excitations created through change of parameters

3.3 TBA: Low Temperature Limit In limit m the integrals can be ignored: Bethe Ansatz equations energy of bare excitations In low temperature limit, all energy is carried by bare excitations whose rapidities θ satisfy BAEs. = large volume L => large m = ML ; IR limit,

3.4 The Multi-Regge Regime [Bartels, VS, Sprenger] Multi-Regge regime reached when Casimir energy vanishes at infinite volume [Bartels,Kotanski, VS] n=6 gluons: u 1 1 u 2,u 3 0 while keeping C s and fixed 4D MRL = 2D IR using check

6-gluon case system parameters solutions of Y 3 (θ) = -1 as function of ϕ

6-gluon case (contd) solutions of Y 1 (θ) = -1 solutions of Y 2 (θ) = -1 Solution of BA equations with 4 roots θ (2) = 0, θ 3 = ± i π/4

n > 6 - gluons [Bartels,VS, Sprenger ] in prep. Same identities at in LLA at weak coupling n=7 gluons:

n = 7 gluons (contd)

n > 6 - gluons [Bartels,VS, Sprenger ] in prep. Same identities as in LLA at weak coupling n=7 gluons: is under investigation…. General algorithm exists to compute remainder fct. for all regions & any number of gluons at coupling involves same number e 2 ?

Conclusions and Outlook Multi-Regge limit is low temperature limit of TBA natural kinematical regime Simplifications: TBA Bethe Ansatz Mandelstam cut contributions excit. energies Regge regime is the only known kinematic limit in which amplitudes simplify at weak and strong coupling Regge Bethe Ansatz provides qualitative and quantitative predictions for Regge-limit of amplitudes at strong coupling Interpolation between weak and strong coupling ? Two new entries in AdS/CFT dictionary: