1 Mobility-Based Predictive Call Admission Control and Bandwidth Reservation in Wireless Cellular Networks Fei Yu and Victor C.M. Leung INFOCOM 2001.

Slides:



Advertisements
Similar presentations
You have been given a mission and a code. Use the code to complete the mission and you will save the world from obliteration…
Advertisements

Advanced Piloting Cruise Plot.
Feichter_DPG-SYKL03_Bild-01. Feichter_DPG-SYKL03_Bild-02.
Copyright © 2003 Pearson Education, Inc. Slide 1 Computer Systems Organization & Architecture Chapters 8-12 John D. Carpinelli.
Part 3 Probabilistic Decision Models
Chapter 1 The Study of Body Function Image PowerPoint
1 Copyright © 2013 Elsevier Inc. All rights reserved. Chapter 1 Embedded Computing.
Copyright © 2011, Elsevier Inc. All rights reserved. Chapter 6 Author: Julia Richards and R. Scott Hawley.
Author: Julia Richards and R. Scott Hawley
1 Copyright © 2013 Elsevier Inc. All rights reserved. Appendix 01.
Effective Change Detection Using Sampling Junghoo John Cho Alexandros Ntoulas UCLA.
Properties Use, share, or modify this drill on mathematic properties. There is too much material for a single class, so you’ll have to select for your.
1 Predictive Group Handover Scheme with Sub-Channel Borrowing for IEEE j- enabled Vehicular Networks Broadband Wireless Communication.
1 Multi-Channel Wireless Networks: Capacity and Protocols Nitin H. Vaidya University of Illinois at Urbana-Champaign Joint work with Pradeep Kyasanur Chandrakanth.
and 6.855J Spanning Tree Algorithms. 2 The Greedy Algorithm in Action
Scalable Routing In Delay Tolerant Networks
Jeopardy Q 1 Q 6 Q 11 Q 16 Q 21 Q 2 Q 7 Q 12 Q 17 Q 22 Q 3 Q 8 Q 13
Jeopardy Q 1 Q 6 Q 11 Q 16 Q 21 Q 2 Q 7 Q 12 Q 17 Q 22 Q 3 Q 8 Q 13
Properties of Real Numbers CommutativeAssociativeDistributive Identity + × Inverse + ×
FACTORING ax2 + bx + c Think “unfoil” Work down, Show all steps.
Year 6 mental test 5 second questions
Year 6 mental test 10 second questions
Università degli Studi di Firenze 08 July 2004 COST th MCM - Budapest, Hungary 1 Cross-layer design for Multiple access techniques in wireless communications.
Evaluating Window Joins over Unbounded Streams Author: Jaewoo Kang, Jeffrey F. Naughton, Stratis D. Viglas University of Wisconsin-Madison CS Dept. Presenter:
A Bandwidth Allocation/Sharing/Extension Protocol for Multimedia Over IEEE Ad Hoc Wireless LANs Shiann-Tsong Sheu and Tzu-fang Sheu IEEE JOURNAL.
MIMO Broadcast Scheduling with Limited Feedback Student: ( ) Director: 2008/10/2 1 Communication Signal Processing Lab.
Chapter 17 Linked Lists.
David Luebke 1 6/7/2014 ITCS 6114 Skip Lists Hashing.
ABC Technology Project
1 Generating Network Topologies That Obey Power LawsPalmer/Steffan Carnegie Mellon Generating Network Topologies That Obey Power Laws Christopher R. Palmer.
Taming User-Generated Content in Mobile Networks via Drop Zones Ionut Trestian Supranamaya Ranjan Aleksandar Kuzmanovic Antonio Nucci Northwestern University.
1 Sizing the Streaming Media Cluster Solution for a Given Workload Lucy Cherkasova and Wenting Tang HPLabs.
1 COPYRIGHT © 2011 ALCATEL-LUCENT. ALL RIGHTS RESERVED. On the Capacity of Wireless CSMA/CA Multihop Networks Rafael Laufer and Leonard Kleinrock Bell.
Outline Minimum Spanning Tree Maximal Flow Algorithm LP formulation 1.
VOORBLAD.
15. Oktober Oktober Oktober 2012.
Name Convolutional codes Tomashevich Victor. Name- 2 - Introduction Convolutional codes map information to code bits sequentially by convolving a sequence.
How to convert a left linear grammar to a right linear grammar
Factor P 16 8(8-5ab) 4(d² + 4) 3rs(2r – s) 15cd(1 + 2cd) 8(4a² + 3b²)
Basel-ICU-Journal Challenge18/20/ Basel-ICU-Journal Challenge8/20/2014.
1..
Routing and Congestion Problems in General Networks Presented by Jun Zou CAS 744.
1 Adaptive Bandwidth Allocation in TDD-CDMA Systems Derek J Corbett & Prof. David Everitt The University of Sydney.
CONTROL VISION Set-up. Step 1 Step 2 Step 3 Step 5 Step 4.
© 2012 National Heart Foundation of Australia. Slide 2.
Maciej Stasiak, Mariusz Głąbowski Arkadiusz Wiśniewski, Piotr Zwierzykowski Models of Links Carrying Multi-Service Traffic Chapter 7 Modeling and Dimensioning.
Understanding Generalist Practice, 5e, Kirst-Ashman/Hull
25 seconds left…...
Januar MDMDFSSMDMDFSSS
We will resume in: 25 Minutes.
©Brooks/Cole, 2001 Chapter 12 Derived Types-- Enumerated, Structure and Union.
Intracellular Compartments and Transport
PSSA Preparation.
Introduction to Ad-hoc & Sensor Networks Security In The Name of God ISC Student Branch in KNTU 4 th Workshop Ad-hoc & Sensor Networks.
© 2007 Levente Buttyán and Jean-Pierre Hubaux Security and Cooperation in Wireless Networks Chapter 11: Wireless operators in.
Essential Cell Biology
Energy Generation in Mitochondria and Chlorplasts
McGraw-Hill©The McGraw-Hill Companies, Inc., 2001 Chapter 16 Integrated Services Digital Network (ISDN)
Murach’s OS/390 and z/OS JCLChapter 16, Slide 1 © 2002, Mike Murach & Associates, Inc.
Probabilistic Reasoning over Time
On QoS Guarantees with Reward Optimization for Servicing Multiple Priority Class in Wireless Networks YaoChing Peng Eunyoung Chang.
1 [3] Jorge Martinez-Bauset, David Garcia-Roger, M a Jose Domenech- Benlloch and Vicent Pla, “ Maximizing the capacity of mobile cellular networks with.
Predictive and Adaptive Bandwidth Reservation for Handoffs in QoS-Sensitive Cellular Networks IEEE Transactions on Parallel and Distributed Systems Author:
Performance Enhancement of Combining QoS Provisioning and Location Management in Wireless Cellular Networks -Fei Yu, Vincent W. S. Wong, Victor C. M. Leung.
Bandwidth Reallocation for Bandwidth Asymmetry Wireless Networks Based on Distributed Multiservice Admission Control Robert Schafrik Lakshman Krishnamurthy.
Dynamic Bandwidth Reservation in Cellular Networks Using Road Topology Based Mobility Predictions InfoCom 2004 Speaker : Bo-Chun Wang
Presentation transcript:

1 Mobility-Based Predictive Call Admission Control and Bandwidth Reservation in Wireless Cellular Networks Fei Yu and Victor C.M. Leung INFOCOM 2001

2 OUTLINE Introduction Model Description Mobility Prediction CAC and Bandwidth Reservation Simulation Results Conclusions

3 Introduction 1/5 Future mobile communication system To support broadband multimedia With diverse QoS requirements Handoff resource not guarantee Performance degradations Magnified in future micro/pico-cellular network Call admission control and bandwidth reservation scheme are required.

4 Introduction 2/5 Handoff blocking are more objectionable than new call blocking. To keep handoff dropping rate below a target level.

5 Introduction 3/5 Popular CAC Guard channel policy Fractional guard channel policy Distributed call admission control schemes Questions of the above assumption Exponentially-distributed channel holding time Perfect knowledge of the rate of handoff

6 Introduction 4/5 1. Research efforts to predict user mobility => dont estimate channel holding time and therefore cannot be directly applied for efficient bandwidth reservation. 2. Each mobile will handoff to neighboring cells with equal probability. => This assumption may not be accurate in general

7 Introduction 5/5 CAC and bandwidth reservation schemes based on the probabilistic prediction of user mobility. The Mobility prediction approach is derived from data compression techniques. Novel prediction approach => predict not only where the mobile users will handoff but also when it will handoff.

8 Model Description The paper dont consider Soft handoff in CDMA Delay-insensitive applications Subsections Network Topology Channel Holding Time User Mobility Pattern

9 Network Topology Use a generalized graph model to represent the actual cellular network. Modeled as a connected graph G = (V, E) V={a,b,c,…..,n} E={(a,b), (a,c),……(n,l)}

10 Channel Holding Time The paper assumes that the channel holding time follows a general distribution, which allows the i.i.d. exponential channel holding time assumption to be relaxed.

11 User Mobility Pattern 1/3 Symmetric random walk model not take into account the trajectory and channel holding time of a mobile. Mobility of a user during a call can be represented by a sequence of events, ( N, H 1, H 2, H 3, …. H n,.. E )

12 User Mobility Pattern 2/3 sequence of events ( N, H 1, H 2, H 3, …. H n,. E ) N = (m, i, t) m, represents the mobile i, represents the original cell t, represents the time when the call arrives Hn = (T k, i) T k, the relative time elapsed since the beginning of the call i, the cell to which the mobile will handoff E = ( T k ) We quantize the relative time into slots of equal duration T, a design parameter. So, T k is the kth time slot since the beginning of the call.

13 User Mobility Pattern 3/3 (N, H 1, H 2, H 3, …. H n,.. E ) is assumed to be generated by a mth order Markov source. Most mobile users have favorite routes and habitual movement patterns.

14 Mobility Prediction Motivated from optimal data compression methods ( Ziv-Lempel algorithms ) Compression Rationale: More probable event => short codewords Less probable event => longer codewords A good data compressor should also be a good predictor.

15 Optimal Data Compression Based on the Ziv-Lempel algorithms for data compression. 1.Parse each block of size n in a greedy manner into distinct substrings X 1, X 2, ….., X n 2.For each j 1, substring X j without its last character is equal to some previous substring X i,where 0 i < j. X j is encoded by the value i, using lg (j - 1) bits 3.Last character of X j encode as ASCII using lg α bits. α is the size of the input alphabet set.

16 Example 1 Alphabet = {a, b, c} Input string = aababcbaccababc… (a)(ab)(abc)(b)(ac)(c)(aba)(bc) The seventh substring aba ab match X 2, using lg (7 - 1) bits a using lg 3 bits

17 Input string = aababcbaccababc… (a)(ab)(abc)(b)(ac)(c)(aba)(bc)

18 Pseudocode of Mobility Prediction

19 A Mobility Trie used mobility rediction

20 1.Modeling the sequence of events generated by a stationary mth order Markov source 2. Predict next events using the mobility prediction scheme derived from the Ziv-Lempel algorithm. => Predict not only to which cell a mobile will handoff but also when the handoff will occur.

21 Implementation Considerations of the Mobility Prediction Scheme Maintain the statistics in a trie Create an array of pointers for each node Use a linked list at each node Use memory economically, but can be more processing A sliding windows may be used.

22 Call Admission Control and Bandwidth Reservation A. Calculation of P ij (T k ) B. The Most Likely Cell-Time (MLCT) C. CAC and Bandwidth Reservation for New calls D. Adaptive Control of Admission Threshold α E. CAC and Bandwidth Reservation for Handoff Calls

23 Calculation of P ij (T k ) the probability that a mobile in cell i will visit cell j during time slot T k Example 2:

24 The Most Likely Cell-Time (MLCT ) We select cells and time slots with P ij (T k ) greater than MLCT threshold, a design parameter, to form the MLCT of this mobile.

25 CAC and Bandwidth Reservation for New Calls

26 Adaptive Control of Admission Threshold is too small, the handoff dropping probability arises. is too large, the resource utilization will be decreased. If P hd (m) < P hd, target (m), is decreased by Otherwise, is increased by is a design parameter

27 CAC and Bandwidth Reservation for Handoff Calls When mobile node handoff to cell i, the CAC algorithm will admit it if the current free bandwidth of cell i can support the call. Bandwidth is reserved for mobile node in its MLCT accordingly.

28 Simulation Results 1.Each cell has a fixed link capacity of 40 bandwidth units (BUs) 2.Time is quantized into units of T= 30s 3.Voice => 1BU, Video => 4BUs 4.Call durations are the same for all calls and exponentially distributed with mean value of 120s 5.Call requests are generated according to a Poisson process with rate 6.Two cases: low user mobility, 0-40 miles/hour higher user mobility, miles/hour 7.Target handoff dropping rate Phd is MLCT threshold =0.08, admission threshold =1 adaptive factor =0.02 OfferedLoad = 120 * * (( 1 – Pvoice) * 4 + Pvoice)) Assumptions:

29 P voice : 0.8 and 1 in the low and high mobility case

30 Comparison with static-reservation

31 Comparison with cell-reservation

32 Conclusions 1.Events generated by a stationary mth order Markov source 2. Predict next events using the mobility prediction scheme derived from the Ziv-Lempel algorithm. Predict not only to which cell a mobile will handoff but also when the handoff will occur. Based on assumptions more realistic than existing proposals. better balance of guaranteeing handoff dropping probability while maximizing resource utilization.