Microstructural remodeling of articular cartilage following defect repair by osteochondral autograft transfer  C.B. Raub, S.C. Hsu, E.F. Chan, R. Shirazi,

Slides:



Advertisements
Similar presentations
Microstructural remodeling of articular cartilage following defect repair by osteochondral autograft transfer  C.B. Raub, S.C. Hsu, E.F. Chan, R. Shirazi,
Advertisements

Biomechanical, biochemical and structural correlations in immature and mature rabbit articular cartilage  P. Julkunen, T. Harjula, J. Iivarinen, J. Marjanen,
Degradable hydrogel scaffolds for in vivo delivery of single and dual growth factors in cartilage repair  T.A. Holland, Ph.D., E.W.H. Bodde, M.D., V.M.J.I.
C.P. Neu, T. Novak, K.F. Gilliland, P. Marshall, S. Calve 
Yevgeniya Kobrina, Lassi Rieppo, Simo Saarakkala, Jukka S
A. Watanabe, C. Boesch, S.E. Anderson, W. Brehm, P. Mainil Varlet 
2D and 3D MOCART scoring systems assessed by 9
Micromechanical mapping of early osteoarthritic changes in the pericellular matrix of human articular cartilage  R.E. Wilusz, S. Zauscher, F. Guilak 
Considerations in measuring cartilage thickness using MRI: factors influencing reproducibility and accuracy  S. Koo, M.S., G.E. Gold, M.D., T.P. Andriacchi,
Osteoporosis increases the severity of cartilage damage in an experimental model of osteoarthritis in rabbits  E. Calvo, M.D., S. Castañeda, M.D., R.
T. Maerz, M. D. Newton, K. Kristof, O. Motovylyak, J. S. Fischgrund, D
Effects of short-term gentle treadmill walking on subchondral bone in a rat model of instability-induced osteoarthritis  H. Iijima, T. Aoyama, A. Ito,
Hisham A. Alhadlaq, M.S., Yang Xia, Ph.D.  Osteoarthritis and Cartilage 
Definition of a Critical Size Osteochondral Knee Defect and its Negative Effect on the Surrounding Articular Cartilage in the Rat  H. Katagiri, L.F. Mendes,
Evaluation of histological scoring systems for tissue-engineered, repaired and osteoarthritic cartilage  M. Rutgers, M.J.P. van Pelt, W.J.A. Dhert, L.B.
Direct bone morphogenetic protein 2 and Indian hedgehog gene transfer for articular cartilage repair using bone marrow coagulates  J.T. Sieker, M. Kunz,
Transplantation of autologous endothelial progenitor cells in porous PLGA scaffolds create a microenvironment for the regeneration of hyaline cartilage.
Intraoperative validation of quantitative T2 mapping in patients with articular cartilage lesions of the knee  S.T. Soellner, A. Goldmann, D. Muelheims,
M. M. Temple, Ph. D. , W. C. Bae, Ph. D. , M. Q. Chen, M. S. , M
NEL-like molecule-1-modified bone marrow mesenchymal stem cells/poly lactic-co- glycolic acid composite improves repair of large osteochondral defects.
Effects of short-term gentle treadmill walking on subchondral bone in a rat model of instability-induced osteoarthritis  H. Iijima, T. Aoyama, A. Ito,
Determining collagen distribution in articular cartilage using contrast-enhanced micro- computed tomography  H.J. Nieminen, T. Ylitalo, S. Karhula, J.-P.
Biomechanical, structural, and biochemical indices of degenerative and osteoarthritic deterioration of adult human articular cartilage of the femoral.
A.R. Gannon, T. Nagel, D.J. Kelly  Osteoarthritis and Cartilage 
PGE2 signal via EP2 receptors evoked by a selective agonist enhances regeneration of injured articular cartilage  S. Otsuka, M.D., T. Aoyama, M.D., Ph.D.,
Changes in spatial collagen content and collagen network architecture in porcine articular cartilage during growth and maturation  J. Rieppo, M.D., M.M.
H. Shao, C. Pauli, S. Li, Y. Ma, A. S. Tadros, A. Kavanaugh, E. Y
The use of hyperosmotic saline for chondroprotection: implications for orthopaedic surgery and cartilage repair  N.M. Eltawil, S.E.M. Howie, A.H.R.W.
A.S. Aula, J. Töyräs, V. Tiitu, J.S. Jurvelin 
Direct bone morphogenetic protein 2 and Indian hedgehog gene transfer for articular cartilage repair using bone marrow coagulates  J.T. Sieker, M. Kunz,
A. Williams, Y. Qian, C.R. Chu  Osteoarthritis and Cartilage 
Bone marrow stimulation induces greater chondrogenesis in trochlear vs condylar cartilage defects in skeletally mature rabbits  H. Chen, A. Chevrier,
The chemokine receptor CCR5 plays a role in post-traumatic cartilage loss in mice, but does not affect synovium and bone  K. Takebe, M.F. Rai, E.J. Schmidt,
Protective effects of a cathepsin K inhibitor, SB , in the canine partial medial meniscectomy model of osteoarthritis  J.R. Connor, C. LePage, B.A.
C. Wu, J. Zheng, X. Yao, H. Shan, Y. Li, P. Xu, X. Guo 
Articular cartilage degeneration following anterior cruciate ligament injury: a comparison of surgical transection and noninvasive rupture as preclinical.
A polarized light microscopy method for accurate and reliable grading of collagen organization in cartilage repair  A. Changoor, N. Tran-Khanh, S. Méthot,
The OARSI histopathology initiative – recommendations for histological assessments of osteoarthritis in the rat  N. Gerwin, A.M. Bendele, S. Glasson,
B.D. Bomsta, M.S., L.C. Bridgewater, Ph.D., R.E. Seegmiller, Ph.D. 
P. Julkunen, J. Iivarinen, P. A. Brama, J. Arokoski, J. S. Jurvelin, H
Nondestructive assessment of sGAG content and distribution in normal and degraded rat articular cartilage via EPIC-μCT  L. Xie, A.S.P. Lin, R.E. Guldberg,
Exercise intervention increases expression of bone morphogenetic proteins and prevents the progression of cartilage-subchondral bone lesions in a post-traumatic.
Structural characteristics of the collagen network in human normal, degraded and repair articular cartilages observed in polarized light and scanning.
A histological comparison of the repair tissue formed when using either Chondrogide® or periosteum during autologous chondrocyte implantation  H.S. McCarthy,
P. -H. Tsai, M. -C. Chou, H. -S. Lee, C. -H. Lee, H. -W. Chung, Y. -C
Radiofrequency (RF) coil impacts the value and reproducibility of cartilage spin–spin (T2) relaxation time measurements  B.J. Dardzinski, E. Schneider 
UTE bi-component analysis of T2* relaxation in articular cartilage
Joint distraction attenuates osteoarthritis by reducing secondary inflammation, cartilage degeneration and subchondral bone aberrant change  Y. Chen,
Pretreatment of periosteum with TGF-β1 in situ enhances the quality of osteochondral tissue regenerated from transplanted periosteal grafts in adult rabbits 
Repair of osteochondral defects with recombinant human type II collagen gel and autologous chondrocytes in rabbit  H.J. Pulkkinen, V. Tiitu, P. Valonen,
A.C. Dang, M.D., A.P. Warren, M.D., H.T. Kim, M.D., Ph.D. 
The role of subchondral bone resorption pits in osteoarthritis: MMP production by cells derived from bone marrow  A. Shibakawa, M.D., Ph.D., K. Yudoh,
Diagnostic performance of knee ultrasonography for detecting degenerative changes of articular cartilage  S. Saarakkala, P. Waris, V. Waris, I. Tarkiainen,
Quantification of differences in bone texture from plain radiographs in knees with and without osteoarthritis  J. Hirvasniemi, J. Thevenot, V. Immonen,
The OARSI histopathology initiative – recommendations for histological assessments of osteoarthritis in the dog  J.L. Cook, K. Kuroki, D. Visco, J.-P.
Do the matrix degrading enzymes cathepsins B and D increase following a high intensity exercise regime?  E.A. Bowe, Ph.D., R.C. Murray, Ph.D., L.B. Jeffcott,
J. Desrochers, M.W. Amrein, J.R. Matyas  Osteoarthritis and Cartilage 
Opposing cartilages in the patellofemoral joint adapt differently to long-term cruciate deficiency: chondrocyte deformation and reorientation with compression 
N. Männicke, M. Schöne, M. Oelze, K. Raum  Osteoarthritis and Cartilage 
Regeneration of articular cartilage – Evaluation of osteochondral defect repair in the rabbit using multiphasic implants  S.R. Frenkel, Ph.D., G. Bradica,
Cartilaginous repair of full-thickness articular cartilage defects is induced by the intermittent activation of PTH/PTHrP signaling  S. Kudo, H. Mizuta,
Significance of the serum CTX-II level in an osteoarthritis animal model: a 5-month longitudinal study  M.E. Duclos, O. Roualdes, R. Cararo, J.C. Rousseau,
K. Kuroki, C.R. Cook, J.L. Cook  Osteoarthritis and Cartilage 
In vitro glycation of articular cartilage alters the biomechanical response of chondrocytes in a depth-dependent manner  J.M. Fick, M.R.J. Huttu, M.J.
Surface roughness and thickness analysis of contrast-enhanced articular cartilage using mesh parameterization  T. Maerz, M.D. Newton, H.W.T. Matthew,
Definition of a Critical Size Osteochondral Knee Defect and its Negative Effect on the Surrounding Articular Cartilage in the Rat  H. Katagiri, L.F. Mendes,
Surgical induction, histological evaluation, and MRI identification of cartilage necrosis in the distal femur in goats to model early lesions of osteochondrosis 
Comparison of cartilage histopathology assessment systems on human knee joints at all stages of osteoarthritis development  C. Pauli, R. Whiteside, F.L.
B.D. Bomsta, M.S., L.C. Bridgewater, Ph.D., R.E. Seegmiller, Ph.D. 
Y. Akasaki, A. Hasegawa, M. Saito, H. Asahara, Y. Iwamoto, M.K. Lotz 
Presentation transcript:

Microstructural remodeling of articular cartilage following defect repair by osteochondral autograft transfer  C.B. Raub, S.C. Hsu, E.F. Chan, R. Shirazi, A.C. Chen, E. Chnari, E.J. Semler, R.L. Sah  Osteoarthritis and Cartilage  Volume 21, Issue 6, Pages 860-868 (June 2013) DOI: 10.1016/j.joca.2013.03.014 Copyright © 2013 Osteoarthritis Research Society International Terms and Conditions

Fig. 1 Safranin-O histology and qPLM maps of osteochondral sections from non-operated knees. (A, B) Safranin-O, (C, D) PI, (E, F) orientation (α) and (G, H) retardance (Γ) maps for representative samples of contralateral non-operated MFC (A, C, E, G, I–L) and lateral trochlea (LT) (B, D, F, H, M–P), with boxed areas in A–H shown in insets in I–L and M–P. ICRS and qPLM scores, and qPLM scores for superficial zone (SZ), middle zone (MZ) and deep zone (DZ) are indicated. ICRS subcategory A = surface, B = matrix, C = cell distribution, D = cell population viability, E = subchondral bone, and F = cartilage mineralization. Osteoarthritis and Cartilage 2013 21, 860-868DOI: (10.1016/j.joca.2013.03.014) Copyright © 2013 Osteoarthritis Research Society International Terms and Conditions

Fig. 2 Effect of OATS grafts on qPLM parameters at 6 and 12 months. PI (A–C), α (D–F), and Γ (G–I) of superficial (SZ, A, D, G), middle (MZ, B, E, H) and deep (DZ, C, F, I) zones of articular cartilage of the contralateral non-operated (Non-Op) or osteochondral autograft (OATS) study groups, at 6 and 12 months post-implantation. OATS repair regions were analyzed at the proximal (P) and distal (D) host (h), as well as the proximal interface (P), central region (C), and distal interface (D) of the graft (g). Data are mean ± SD (n = 4 for OATS; n = 6 for Non-Op). * indicates difference vs time-matched Non-Op (P < 0.05). Osteoarthritis and Cartilage 2013 21, 860-868DOI: (10.1016/j.joca.2013.03.014) Copyright © 2013 Osteoarthritis Research Society International Terms and Conditions

Fig. 3 Co-localization of qPLM parameters with histological indices of graft deterioration. (A–C) Safranin-O, (D–F) PI, (G–I) α, and (J–L) Γ maps for representative samples of good OATS repair (A, D, H, J), moderate OATS repair (B, E, H, K), and poor OATS repair (C, F, I, L) at 6 months post-operatively. ICRS scores, qPLM overall scores, and qPLM zonal values are indicated. ICRS subcategory A = surface, B = matrix, C = cell distribution, D = cell population viability, E = subchondral bone, and F = cartilage mineralization. PI, α, and Г averages in regions from proximal (P), central (C), and distal (D) graft superficial (SZ), middle (MZ) and deep zones (DZ) are tabulated. Osteoarthritis and Cartilage 2013 21, 860-868DOI: (10.1016/j.joca.2013.03.014) Copyright © 2013 Osteoarthritis Research Society International Terms and Conditions

Fig. 4 Correlation of qPLM scores with histopathological indices of osteochondral deterioration. Weighted (open markers) and zone-weighted (filled markers) qPLM scores vs (A) summed ICRS score and (B) summed Modified O'Driscoll (MOD) score, qPLM DZ subscore vs (C) ICRS cell distribution subscore and (D) MOD cell morphology subscore, and qPLM DZ subscore vs (E) ICRS cartilage mineralization subscore and (F) MOD structural characteristics subscore. Data are from n = 8 OATS and n = 12 contralateral non-operated samples. Values of Spearman's correlation coefficient, ρ, are indicated. Data marker types, defined in the legend, indicate OATS and Non-Op samples for weighted and unweighted scores. Osteoarthritis and Cartilage 2013 21, 860-868DOI: (10.1016/j.joca.2013.03.014) Copyright © 2013 Osteoarthritis Research Society International Terms and Conditions

Fig. 5 Overlay of ellipse representation of qPLM scores with H&E sections of non-operated, good OATS repair, and poor OATS repair samples. Overlays are shown for (A) non-operated MFC, (B, C) a good OATS repair, and (D–F) a poor OATS repair. qPLM parameters PI, α, and Γ were averaged over local areas, both in the host (h) and graft (g) regions, separated by dotted line in repairs (B, D), and used to calculate ellipse aspect ratio, orientation, and area, respectively (see cartoon). Boxes areas in (B, D) are shown in detail in insets (C, E, F) to show chondrocyte clusters (arrows) near the host-graft cleft. Osteoarthritis and Cartilage 2013 21, 860-868DOI: (10.1016/j.joca.2013.03.014) Copyright © 2013 Osteoarthritis Research Society International Terms and Conditions

Osteoarthritis and Cartilage 2013 21, 860-868DOI: (10. 1016/j. joca Copyright © 2013 Osteoarthritis Research Society International Terms and Conditions

Osteoarthritis and Cartilage 2013 21, 860-868DOI: (10. 1016/j. joca Copyright © 2013 Osteoarthritis Research Society International Terms and Conditions

Figure S1 Determination of boundaries between cartilage zones from α depth profiles for non-operated MFC (A–C, G–I) and LT (D–F, J–L) sites. (A, D) Representative depth-averaged α curve, showing zonal boundaries (round blue markers), and (B, E) depth-averaged PI curve of a single ROI. (C, F) Zonal boundary positions averaged from normal (non-operated) samples, for regions along an 11 mm span along the articular surface. From logistic fits to α ROI data, zonal (G, J) boundary values and (H, K) thickness, as well as (I, L) % of total thickness. Data shown as mean ± SD, n = 12 Non-Op condyles. Osteoarthritis and Cartilage 2013 21, 860-868DOI: (10.1016/j.joca.2013.03.014) Copyright © 2013 Osteoarthritis Research Society International Terms and Conditions

Figure S2 Quantification of PI, α, and Γ from non-operated goat MFC. (A, C, E) Colormaps (qPLM) with ROI boundaries (black dotted line) and (B, D, F) ROI quantification, subdivided by zone, for PI (A, B), α (C, D), and Γ (E, F). Graph data markers and bars represent individual ROI mean ± SD (across all depth levels within a zone); lines represent non-operated control group zonal mean ± SE (n = 6 condyles/Non-Op group). Osteoarthritis and Cartilage 2013 21, 860-868DOI: (10.1016/j.joca.2013.03.014) Copyright © 2013 Osteoarthritis Research Society International Terms and Conditions

Figure S3 Effect of joint site, time post-implantation and zone on qPLM parameters of articular cartilage of non-operated goat knees. (A) PI, (B) α, and (C) Γ for articular cartilage from the non-operated (contralateral) knee, medial femoral condyle (MFC) and lateral trochlea (LT) at 6 and 12 months post-implantation, for superficial (SZ), middle (MZ) and deep (DZ) zones. Data are mean ± SD (n = 6/group). * Indicates difference vs. time- or site-matched group (P < 0.05). Osteoarthritis and Cartilage 2013 21, 860-868DOI: (10.1016/j.joca.2013.03.014) Copyright © 2013 Osteoarthritis Research Society International Terms and Conditions

Figure S4 Quantification of PI, α, and Γ from a good OATS repair of goat MFC. (A, C, E) Colormaps (qPLM) with ROI boundaries (black dotted line) and (B, D, F) ROI quantification, subdivided by zone, for PI (A, B), α (C, D), and Γ (E, F). Graph data markers and bars represent individual ROI mean ± SD (across all depth levels within a zone); lines represent non-operated control group zonal mean ± SE (n = 6 condyles/Non-Op group). Osteoarthritis and Cartilage 2013 21, 860-868DOI: (10.1016/j.joca.2013.03.014) Copyright © 2013 Osteoarthritis Research Society International Terms and Conditions

Figure S5 Quantification of PI, α, and Γ from moderate OATS repair of goat MFC. (A, C, E) Colormaps (qPLM) with ROI boundaries (black dotted line) and (B, D, F) ROI quantification, subdivided by zone, for PI (A, B), α (C, D), and Γ (E, F). Graph data markers and bars represent individual ROI mean ± SD (across all depth levels within a zone); lines represent non-operated control group zonal mean ± SE (n = 6 condyles/Non-Op group). Osteoarthritis and Cartilage 2013 21, 860-868DOI: (10.1016/j.joca.2013.03.014) Copyright © 2013 Osteoarthritis Research Society International Terms and Conditions

Figure S6 Quantification of PI, α, and Γ of a poor OATS repair of goat medial femoral condyle. (A, C, E) Colormaps (qPLM) with ROI boundaries (black dotted line) and (B, D, F) ROI quantification, subdivided by zone, for PI (A, B), α (C, D), and Γ (E, F). Graph data markers and bars represent individual ROI mean ± SD (across all depth levels within a zone); lines represent non-operated control group zonal mean ± SE (n = 6 condyles/Non-Op group). Osteoarthritis and Cartilage 2013 21, 860-868DOI: (10.1016/j.joca.2013.03.014) Copyright © 2013 Osteoarthritis Research Society International Terms and Conditions

Figure S7 Site-matched group PI, α, and Γ from OATS graft-implanted goat medial femoral condyles, 6 and 12 months post-implantation. PI (A, B), α (C, D), and Γ (E, F) at 6 months (A, C, E) and 12 months (B, D, E) post-operatively averaged over matched sites at the proximal interface (P1, P2), central implant (C1–C5) and distal interface (D1, D2) for superficial (SZ), middle (MZ) and deep (DZ) zones. Graph data markers represent OATS group mean ± SE (n = 4 condyles). Horizontal lines represent non-operated control group zonal mean ± SE (n = 6 condyles/Non-Op group). Osteoarthritis and Cartilage 2013 21, 860-868DOI: (10.1016/j.joca.2013.03.014) Copyright © 2013 Osteoarthritis Research Society International Terms and Conditions

Figure S8 Effect of implant site, time-point and zone on PI and α values. Effect on PI vs. α means (polar coordinates) of OATS at (A) 6 and (B) 12 months post-operatively by implant site (proximal interface, P; central, C; distal interface, D) and zone (superficial, SZ; middle, MZ; deep, DZ), plotted with zone and time-matched controls. Data markers represent average values for n = 4 condyles/experimental group and n = 6 condyles/non-operated group. Osteoarthritis and Cartilage 2013 21, 860-868DOI: (10.1016/j.joca.2013.03.014) Copyright © 2013 Osteoarthritis Research Society International Terms and Conditions