MIMO Broadcast Scheduling with Limited Feedback Student: (96325501) Director: 2008/10/2 1 Communication Signal Processing Lab.

Slides:



Advertisements
Similar presentations
Numbers Treasure Hunt Following each question, click on the answer. If correct, the next page will load with a graphic first – these can be used to check.
Advertisements

1
Feichter_DPG-SYKL03_Bild-01. Feichter_DPG-SYKL03_Bild-02.
1 Vorlesung Informatik 2 Algorithmen und Datenstrukturen (Parallel Algorithms) Robin Pomplun.
© 2008 Pearson Addison Wesley. All rights reserved Chapter Seven Costs.
Copyright © 2003 Pearson Education, Inc. Slide 1 Computer Systems Organization & Architecture Chapters 8-12 John D. Carpinelli.
McGraw-Hill©The McGraw-Hill Companies, Inc., 2003 Chapter 3 Data Transmission.
Chapter 1 The Study of Body Function Image PowerPoint
Cognitive Radio Communications and Networks: Principles and Practice By A. M. Wyglinski, M. Nekovee, Y. T. Hou (Elsevier, December 2009) 1 Chapter 10 User.
Copyright © 2011, Elsevier Inc. All rights reserved. Chapter 6 Author: Julia Richards and R. Scott Hawley.
Author: Julia Richards and R. Scott Hawley
1 Copyright © 2013 Elsevier Inc. All rights reserved. Appendix 01.
Properties Use, share, or modify this drill on mathematic properties. There is too much material for a single class, so you’ll have to select for your.
UNITED NATIONS Shipment Details Report – January 2006.
1 RA I Sub-Regional Training Seminar on CLIMAT&CLIMAT TEMP Reporting Casablanca, Morocco, 20 – 22 December 2005 Status of observing programmes in RA I.
Jeopardy Q 1 Q 6 Q 11 Q 16 Q 21 Q 2 Q 7 Q 12 Q 17 Q 22 Q 3 Q 8 Q 13
Jeopardy Q 1 Q 6 Q 11 Q 16 Q 21 Q 2 Q 7 Q 12 Q 17 Q 22 Q 3 Q 8 Q 13
Properties of Real Numbers CommutativeAssociativeDistributive Identity + × Inverse + ×
FACTORING ax2 + bx + c Think “unfoil” Work down, Show all steps.
Year 6 mental test 10 second questions
1 Discreteness and the Welfare Cost of Labour Supply Tax Distortions Keshab Bhattarai University of Hull and John Whalley Universities of Warwick and Western.
1 Click here to End Presentation Software: Installation and Updates Internet Download CD release NACIS Updates.
Solve Multi-step Equations
REVIEW: Arthropod ID. 1. Name the subphylum. 2. Name the subphylum. 3. Name the order.
Break Time Remaining 10:00.
Detection Chia-Hsin Cheng. Wireless Access Tech. Lab. CCU Wireless Access Tech. Lab. 2 Outlines Detection Theory Simple Binary Hypothesis Tests Bayes.
PP Test Review Sections 6-1 to 6-6
EU market situation for eggs and poultry Management Committee 20 October 2011.
EU Market Situation for Eggs and Poultry Management Committee 21 June 2012.
Bright Futures Guidelines Priorities and Screening Tables
Bellwork Do the following problem on a ½ sheet of paper and turn in.
2 |SharePoint Saturday New York City
IP Multicast Information management 2 Groep T Leuven – Information department 2/14 Agenda •Why IP Multicast ? •Multicast fundamentals •Intradomain.
Exarte Bezoek aan de Mediacampus Bachelor in de grafische en digitale media April 2014.
BEEF & VEAL MARKET SITUATION "Single CMO" Management Committee 18 April 2013.
VOORBLAD.
Name Convolutional codes Tomashevich Victor. Name- 2 - Introduction Convolutional codes map information to code bits sequentially by convolving a sequence.
Copyright © 2012, Elsevier Inc. All rights Reserved. 1 Chapter 7 Modeling Structure with Blocks.
1 RA III - Regional Training Seminar on CLIMAT&CLIMAT TEMP Reporting Buenos Aires, Argentina, 25 – 27 October 2006 Status of observing programmes in RA.
Factor P 16 8(8-5ab) 4(d² + 4) 3rs(2r – s) 15cd(1 + 2cd) 8(4a² + 3b²)
Basel-ICU-Journal Challenge18/20/ Basel-ICU-Journal Challenge8/20/2014.
1..
CONTROL VISION Set-up. Step 1 Step 2 Step 3 Step 5 Step 4.
© 2012 National Heart Foundation of Australia. Slide 2.
Adding Up In Chunks.
Universität Kaiserslautern Institut für Technologie und Arbeit / Institute of Technology and Work 1 Q16) Willingness to participate in a follow-up case.
Understanding Generalist Practice, 5e, Kirst-Ashman/Hull
1 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt Synthetic.
Model and Relationships 6 M 1 M M M M M M M M M M M M M M M M
25 seconds left…...
Indicator 1 – Number of Older Americans Indicator 2 – Racial and Ethnic Composition.
H to shape fully developed personality to shape fully developed personality for successful application in life for successful.
Januar MDMDFSSMDMDFSSS
Analyzing Genes and Genomes
We will resume in: 25 Minutes.
©Brooks/Cole, 2001 Chapter 12 Derived Types-- Enumerated, Structure and Union.
Essential Cell Biology
Clock will move after 1 minute
Intracellular Compartments and Transport
PSSA Preparation.
Essential Cell Biology
Immunobiology: The Immune System in Health & Disease Sixth Edition
1 Chapter 13 Nuclear Magnetic Resonance Spectroscopy.
Energy Generation in Mitochondria and Chlorplasts
Murach’s OS/390 and z/OS JCLChapter 16, Slide 1 © 2002, Mike Murach & Associates, Inc.
Presentation transcript:

MIMO Broadcast Scheduling with Limited Feedback Student: ( ) Director: 2008/10/2 1 Communication Signal Processing Lab

Outline Introduction System model MIMO broadcast scheduling algorithms – MIMO Broadcast Scheduling with SINR Feedback – MIMO Broadcast Scheduling with Selected Feedback – MIMO Broadcast Scheduling with Quantized Feedback Conclusion 2008/10/2 2 Communication Signal Processing Lab

Introduction Multiuser diversity – Channel-aware scheduling – System capacity – The PDF of 2008/10/2 3 Communication Signal Processing Lab

Introduction 2008/10/2 4 Communication Signal Processing Lab

Introduction 2008/10/2 5 Communication Signal Processing Lab

System model BS (M antennas) allocates independent information streams from all M Tx antennas to the M most favorable user (N antennas) with the highest SINR. Downlink of a single-cell wireless system – Tx: M antennas, Rx: N antennas ( ) – A total of K users ( ) Only J out of K users are allowed to communicate with BS simultaneously. ( ) 2008/10/2 6 Communication Signal Processing Lab

System model The SINR-based scheduling algorithm requires the feedback of KN SINR values and the feedback load increases with the increase of the number of receiver antennas 2008/10/2 7 Communication Signal Processing Lab

MIMO Broadcast Scheduling with SINR Feedback 2008/10/2 8 Communication Signal Processing Lab

MIMO Broadcast Scheduling with SINR Feedback This algorithm only requires a feedback of total K SINR values. Scheduling Algorithm 2008/10/2 9 Communication Signal Processing Lab

MIMO Broadcast Scheduling with SINR Feedback 2008/10/2 10 Communication Signal Processing Lab

MIMO Broadcast Scheduling with SINR Feedback Throughput analysis 2008/10/2 11 Communication Signal Processing Lab

MIMO Broadcast Scheduling with SINR Feedback 2008/10/2 12 Communication Signal Processing Lab

MIMO Broadcast Scheduling with SINR Feedback 2008/10/2 13 Communication Signal Processing Lab

MIMO Broadcast Scheduling with SINR Feedback 2008/10/2 14 Communication Signal Processing Lab

MIMO Broadcast Scheduling with Selected Feedback Scheduling Algorithm 2008/10/2 15 Communication Signal Processing Lab

MIMO Broadcast Scheduling with Selected Feedback 2008/10/2 16 Communication Signal Processing Lab

MIMO Broadcast Scheduling with Selected Feedback Throughput analysis – It can be observed that when λ 0, (22) is equivalent to (16) 2008/10/2 17 Communication Signal Processing Lab

MIMO Broadcast Scheduling with Selected Feedback 2008/10/2 18 Communication Signal Processing Lab

MIMO Broadcast Scheduling with Selected Feedback Feedback load analysis – Assume that l users are selected for feedback in one time slot ( l users satisfying ) – F B (t) is the CDF of B k – The probability of l – Average feedback load of the selected scheduling 2008/10/2 19 Communication Signal Processing Lab

MIMO Broadcast Scheduling with SINR Feedback Average feedback ratio (FLR) ζ – FLR is not dependent on the number of user K – When the threshold (λ) is increased, FLR (ζ) decreases. 2008/10/2 20 Communication Signal Processing Lab

MIMO Broadcast Scheduling with SINR Feedback 2008/10/2 21 Communication Signal Processing Lab

MIMO Broadcast Scheduling with SINR Feedback Throughput-FLR tradeoff – The throughput and FLR both depend on the threshold λ and decrease when λ increase. – Throughput-oriented: the scheme is to minimize FLR while guaranteeing a target throughput. – FLR-oriented: the scheme is to maximize the throughput while attaining a target FLR. – FLR can be greatly reduced without sacrificing the throughput. 2008/10/2 22 Communication Signal Processing Lab

MIMO Broadcast Scheduling with SINR Feedback (1) Target throughput =6.3 bps (2) λ=10 dB(2) λ=5 dB (3) Throughput =7.7 bps 2008/10/2 23 Communication Signal Processing Lab

MIMO Broadcast Scheduling with SINR Feedback (3) FLR=0.05 (2) λ=10 dB (2) λ=5 dB (1) Target FLR= /10/2 24 Communication Signal Processing Lab

MIMO Broadcast Scheduling with SINR Feedback 2008/10/2 25 Communication Signal Processing Lab

MIMO Broadcast Scheduling with Quantized Feedback Scheduling algorithm 2008/10/2 26 Communication Signal Processing Lab

MIMO Broadcast Scheduling with Quantized Feedback 2008/10/2 27 Communication Signal Processing Lab

MIMO Broadcast Scheduling with Quantized Feedback Quantization – The full feedback scheduling where each user feeds a real value B k to BS. – The quantized feedback scheduling requires each user to send back a quantized value Q(B k ) – The number of levels L is determined by the number of bits required to represent a value B k and L=2 b 2008/10/2 28 Communication Signal Processing Lab

MIMO Broadcast Scheduling with Quantized Feedback Throughput analysis 2008/10/2 29 Communication Signal Processing Lab

MIMO Broadcast Scheduling with Quantized Feedback – CDF of V When – PDF of V 2008/10/2 30 Cmmunication Signal Processing Lab

MIMO Broadcast Scheduling with Quantized Feedback 1-bit feedback – Each user feeds 1 or 0 back to the BS according to the threshold λ 1. If the quantization threshold λ 1 is fixed, the total rate will be a constant. 2008/10/2 31 Communication Signal Processing Lab

MIMO Broadcast Scheduling with Quantized Feedback 2008/10/2 32 Communication Signal Processing Lab

MIMO Broadcast Scheduling with Quantized Feedback Optimal threshold λ 1 – The throughput is a function of λ 1 and K, simply denote by E(R) = f(K, λ 1 ). – It is not optimal to fix λ 1 for various K to enhance the throughout. – To search for the optimal quantization threshold, we need to solve which is not tractable. – The optimal threshold should be dependent on K for given M, N and SNR 2008/10/2 33 Communication Signal Processing Lab

MIMO Broadcast Scheduling with Quantized Feedback 2008/10/2 34 Communication Signal Processing Lab

MIMO Broadcast Scheduling with Quantized Feedback 2008/10/2 35 Communication Signal Processing Lab

Conclusion 2008/10/2 36 Communication Signal Processing Lab

Conclusion Combined with spatial multiplexing and receive antenna selection, the proposed scheduling algorithm can achieve high multiuser diversity The feedback load can be greatly reduced with a negligible throughput loss with user selection based on SINR 2008/10/2 37 Communication Signal Processing Lab

Reference Z. Wei and K. B. Letaief, MIMO Broadcast Scheduling with Limited Feedback, IEEE J. Select. Areas Commun., vol. 25, pp , Sep D. Gesbert and M. Alouini, How much feedback is multi-user diversity really worth?, in Proc. IEEE ICC2004, Int. Conf. Commun., June 20-24, 2004, vol 1, pp /10/2 38 Communication Signal Processing Lab