Laser spectroscopy and ab initio calculations on TaF

Slides:



Advertisements
Similar presentations
FOURIER TRANSFORM EMISSION SPECTROSCOPY AND AB INITIO CALCULATIONS ON WO R. S. Ram, Department of Chemistry, University of Arizona J. Liévin, Université.
Advertisements

Complementary Use of Modern Spectroscopy and Theory in the Study of Rovibrational Levels of BF 3 Robynne Kirkpatrick a, Tony Masiello b, Alfons Weber c,
High Resolution Laser Induced Fluorescence Spectroscopic Study of RuF Timothy C. Steimle, Wilton L. Virgo Tongmei Ma The 60 th International Symposium.
Is the Equilibrium Structure of BeOH Linear or Bent? Kyle Mascaritolo Dr. Michael Heaven.
Spectroscopy of CuN in the Near Infrared by Intracavity Laser Absorption Spectroscopy Leah C. O'Brien and Kaitlin A. Womack, Department of Chemistry, Southern.
1 OBSERVATION OF TWO  =0 + EXCITED ELECTRONIC STATES IN JET-COOLED LaH Suresh Yarlagadda Ph.D Student Homi Bhabha National Institute Bhabha Atomic Research.
The Spectroscopy of UF and UF + Joshua Bartlett, Ivan Antonov, Dr. Michael Heaven Emory University, Department of Chemistry 1515 Dickey Drive, Atlanta.
D.L. KOKKIN, N.J. REILLY, J.A. JOESTER, M. NAKAJIMA, K. NAUTA, S.H. KABLE and T.W. SCHMIDT Direct Observation of the c State of C 2 School of Chemistry,
Electronic transitions of ScP N. Wang, Y. W. Ng, K. F. Ng, and A. S.-C. Cheung Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong.
E LECTRONIC T RANSITIONS OF S CANDIUM M ONOXIDE NA WANG, Y.W. NG, and A. S-C. CHEUNG The University of Hong Kong 109 Pokfulam Road, Hong Kong SAR, P.R.China.
CHEMISTRY 2000 Topic #1: Bonding – What Holds Atoms Together? Spring 2010 Dr. Susan Lait.
Anh T. Le and Timothy C. Steimle* The molecular frame electric dipole moment and hyperfine interaction in hafnium fluoride, HfF. Department of Chemistry.
Probing the electronic structure of the Nickel Monohalides: Spectroscopy of the low-lying electronic states of NiX (X=Cl, Br, I). Lloyd Muzangwa Molecular.
VADIM L. STAKHURSKY *, LILY ZU †, JINJUN LIU, TERRY A. MILLER Laser Spectroscopy Facility, Department of Chemistry, The Ohio State University 120 W. 18th.
Laser Excitation and Fourier Transform Emission Spectroscopy of ScS R. S. Ram Department of Chemistry, University of Arizona, Tucson, AZ J. Gengler,
Laser spectroscopy of Iridium monophosphide H. F. Pang, Y. Xia, A. W. Liu and A. S-C. Cheung Department of Chemistry, The University of Hong Kong, Pokfulam.
ROTATIONALLY RESOLVED ELECTRONIC SPECTRA OF SECONDARY ALKOXY RADICALS 06/22/10 JINJUN LIU AND TERRY A. MILLER Laser Spectroscopy Facility Department of.
Detection of the H 2 PS free radical by laser spectroscopy Robert Grimminger *, Dennis J. Clouthier *, and Riccardo Tarroni † * Department of Chemistry,
Electronic Transition of Ruthenium Monoxide Na Wang, Y. W. Ng and A. S.-C. Cheung Department of Chemistry The University of Hong Kong.
Electronic Spectroscopy of Palladium Dimer (Pd 2 ) 68th OSU International Symposium on Molecular Spectroscopy Yue Qian, Y. W. Ng and A. S-C. Cheung Department.
Fang Wang & Timothy C. Steimle Dept. Chem. & BioChem., Arizona State University, Tempe, AZ,USA The 65 th International Symposium on Molecular Spectroscopy,
Electronic Transitions of Palladium Monoboride and Platinum Monoboride Y.W. Ng, H.F. Pang, Y. S. Wong, Yue Qian, and A. S-C. Cheung Department of Chemistry.
Ionization Energy Measurements and Spectroscopy of HfO and HfO+
60th International Symposium on Molecular Spectroscopy Discovery: GaAs:Er system, 1983 The coincidence of the transition wavelength with the absorption.
Rotationally-Resolved Spectroscopy of the Bending Modes of Deuterated Water Dimer JACOB T. STEWART AND BENJAMIN J. MCCALL DEPARTMENT OF CHEMISTRY, UNIVERSITY.
Electronic transitions of Yttrium Monoxide Allan S.-C. Cheung, Y. W. Ng, Na Wang and A. Clark Department of Chemistry University of Hong Kong OSU International.
62nd OSU International Symposium on Molecular Spectroscopy TA12 Laser Spectroscopy of Iridium Monoboride Jianjun Ye, H. F. Pang, A. M-Y. Wong, J. W-H.
A NEW 2 Σ Σ + TRANSITION OF PtF BY INTRACAVITY LASER ABSORPTION SPECTROSCOPY LEAH C O'BRIEN, TAYLOR DAHMS, KAITLIN A WOMACK Department of Chemistry,
A NEW ANALYSIS OF A VERY OLD SPECTRUM: THE HIGHLY PERTURBED A 2  i – X 2  i BAND SYSTEM OF THE CHLORINE CATION (Cl 2 ) Mohammed A. Gharaibeh and Dennis.
Dispersed fluorescence studies of jet-cooled HCF and DCF: Vibrational Structure of the X 1 A state.
Mohammed Gharaibeh, Fumie X. Sunahori, and Dennis J. Clouthier Department of Chemistry, University of Kentucky Riccardo Tarroni Dipartimento di Chimica.
Development of a cavity ringdown spectrometer for measuring electronic states of Be clusters JACOB STEWART, MICHAEL SULLIVAN, MICHAEL HEAVEN DEPARTMENT.
Fourier Transform Emission Spectroscopy of Some New Bands of ReN R. S. Ram Department of Chemistry, University of Arizona, Tucson, AZ and P. F. Bernath.
Ce-Promoted Bond Activation of Ethylene Probed by Mass-Analyzed Threshold Ionization Spectroscopy Department of Chemistry University of Kentucky, Lexington,
Laser Spectroscopy of the C 1 Σ + – X 1 Σ + Transition of ScI ZHENWU LIAO, MEI YANG, MAN-CHOR CHAN Department of Chemistry, The Chinese University of Hong.
Laser spectroscopy of a halocarbocation: CH 2 I + Chong Tao, Calvin Mukarakate, and Scott A. Reid Department of Chemistry, Marquette University 61 st International.
Yu-Shu Lin, Cheng-Chung Chen, and Bor-Chen Chang Department of Chemistry National Central University Chung-Li 32001, Taiwan ~ ~ Electronic Spectroscopy.
The 61 th International Symposium on Molecular Spectroscopy. ‘06 Funded by: NSF- Exp. Phys. Chem Mag. Hyperfine Interaction in 171 YbF and 173 YbF Timothy.
Laser spectroscopic study of CaH in the B 2 Σ + and D 2 Σ + state Kyohei Watanabe, Kanako Uchida, Kaori Kobayashi, Fusakazu Matsushima, Yoshiki Moriwaki.
BORONYL MIMICS GOLD: A PHOTOELECTRON SPECTROSCOPY STUDY Tian Jian, Gary V. Lopez, Lai-Sheng Wang Department of Chemistry, Brown University International.
Fourier Transform Emission Spectroscopy of New Visible Systems of NbN R. S. Ram Department of Chemistry, University of Arizona, Tucson, AZ And P.
LASER INDUCED FLUORESCENCE SPECTROSCOPY OF THE SiNSi RADICAL II: IDENTIFICATIONS OF THE A2A1, B2B1, AND D2Sg+ STATES C. MOTOYOSHI, Y. SUMIYOSHI, Y. ENDO.
ANH T. LE, GREGORY HALL, TREVOR SEARSa Division of Chemistry
Time-resolved infrared diode laser spectroscopy of the n1 band of CoNO
Spin Polarization Spectroscopy of
& DETECTION AND CHARACTERIZATION OF THE STANNYLENE (SnH2) FREE RADICAL.
LASER SPECTROSCOPY AND DYNAMICS OF THE JET-COOLED AsH2 FREE RADICAL
Jack C. Harms, Leah C. O’Brien,* and James J. O’Brien
Observations of low-lying states of NiD; multi-isotope analysis
Wendy W. Chen, Thomas C. Galvin, Thomas J. Houlahan, and J. Gary Eden
LASER-INDUCED FLUORESCENCE SPECTROSCOPY OF TWO RUTHENIUM-BEARING MOLECULES: RuF AND RuCl Hanif Zarringhalam,Department of Physics Allan G. Adam, Department.
69th. International Symposium on Molecular Spectroscopy
N2 Vibrational Temperature, Gas Temperature,
Optical Stark Spectroscopy and Hyperfine study of Gold Sulfide (AuS)
Timothy C. Steimle , T. Maa, S. Muscarella, and Damian Kokkin
Leah C. O'Brien and Kaitlin Womack Department of Chemistry
Kaitlin Womack, Taylor Dahms, Leah O’Brien Department of Chemistry
High Resolution Laser Spectroscopy of Iridium Monofluoride
Electronic Structure of CaOCa Via Laser Induced Fluorescence (LIF)
Single Vibronic Level (SVL) emission spectroscopy of CHBr: Vibrational structure of the X1A and a3A  states.
Optical Stark Spectroscopy and Hyperfine study of Gold Sulfide (AuS)
CHONG TAO, D. BRUSSE, Y. MISHCHENKO, C. MUKARAKATE and S. A. REID,
Electronic bands of ScC in the region 620 – 720 nm
Fourier Transform Emission Spectroscopy of CoH and CoD
Threshold Ionization and Spin-Orbit Coupling of CeO
A Theoretical Search for an Electronic Spectrum of the He–BeO Complex
HIGH RESOLUTION LASER SPECTROSCOPY OF NICKEL MONOBORIDE, NiB
Spectroscopy, Structure, and Ionization Energy of BeOBe
DeWayne T. Halfen and Lucy M. Ziurys Department of Chemistry
Presentation transcript:

Laser spectroscopy and ab initio calculations on TaF K. F. Ng and Allan S-C. Cheung Department of Chemistry, the University of Hong Kong, Hong Kong Wenli Zou Institute of Modern Physics, Northwest University, Xi’an China Wenjin Liu Department of Chemistry, Peking University, Beijing, China ISMS 71th Meeting - June 19 - 24, 2016 - Champaign-Urbana, Illinois Paper – RI 12

Background Theoretical calculation: TaCl [1] Bauschlicher (2000) J. Phys. Chem. 104, 5843 Performed DFT and CCST(T) calculations predicted the ground state to be 3+ state and several low-lying 5, 5 and 3 electronic states. TaCl [2] Bernath & coworkers (2005) J. Mol. Spectrosc. 232, 358 Experimental measurement of the TaCl spectrum. The ground and nearby low energy states were confirmed to be the Ω" = 0+ and Ω" = 2 components. 

Experimental Setup  Schematic diagram of LIF experimental setup

Experimental Conditions Molecule production: Laser ablation/reaction     Ta + SF6 (5% in Ar) → TaF + etc. Ablation Laser: Nd:YAG, 10 Hz, 532 nm, ~1.5 mJ Gas Pressure: 6 atm (argon + reagent gas) Background pressure: 8 x 10-5Torr. Excitation Laser for LIF spectroscopy: Tunable dye laser (440 -560 nm) pumped by Nd:YAG laser at 355 nm

Results and Analysis Observed electronic transitions of the TaF

Laser Induced Fluorescence spectrum of (0, 1) band of the [19 Laser Induced Fluorescence spectrum of (0, 1) band of the [19.8] W' = 0 - W'' = 0 transition J ___________ 1 ___________ 0   ___________ 2 R(0) P(1)

___________ 1 ___________ 0 ___________ 3 ___________ 2 Laser Resolved fluorescence spectrum of the (v, 0) band of the [18.0] W = 1 - X 3Σ- (0+) transition ___________ 1 ___________ 0   _______________________________________________ 4 ___________ 3 ___________ 2 Laser The vibrational separation (DG1/2) for the X3Σ - state has been determined to be 697. 02 cm-1

Laser Induced Fluorescence spectrum of (0, 1) band of the [21 Laser Induced Fluorescence spectrum of (0, 1) band of the [21.4] W' = 2 - W'' = 2 transition J ___________ 3 ___________ 2   ___________ 4 R(2) Q(2) P(3) cm-1

Molecular Constants for TaF (cm-1) State W v Tn Bn [22.9] 22937.47(1) 0.2644(2) [22.1] 1 22704.47(1) 0.2630(1)   22123.51(5) 0.2665(1) [19.9] 19856.69(4) 0.2690(1) [19.8] 2 20950.05(5) 0.2700(1) 20357.69(4) 0.2720(1) 19759.82(5) 0.2740(1) [18.6] 18626.33(2) 0.2744(1) [18.1] v +1 18672.36(1) 0.2668(1) 18093.46(7) 0.2685(1) X 3Σ- 1388.11(1) 0.2926(1) 697.02(1) 0.2943(1) 0.2961(1) State W v Tv Bv [21.4] 2 1 a + 21982.90(6) 0.2649(1)   a + 21445.21(5) 0.2685(1) A 3 a + 675.98(4) 0.2821(1) a 0.2838(1)

Ab initio calculations on TaF The low-lying Λ-S and  states of TaF were calculated: Level of theory - The state-averaged complete active space self-consistent field (SA-CASSCF) and with internally contracted multi-reference configuration interaction with singles and doubles and Davidson's cluster correction (MRCISD+Q) (with the active space of 4 electrons in 6 orbitals, that is, the molecular orbitals corresponding to Ta 5d6s are active). Spin-orbit coupling (SOC) the state-interaction approach at the SA-CASSCF level via the relativistic effective core potentials (RECPs) spin-orbit operator, where the diagonal elements of the spin-orbit matrix are replaced by the above MRCISD+Q energies. The spectroscopic properties of the ground and many low-lying electronic states of the TaF molecule were obtained.

Ab initio calculations on TaF Λ-S states of TaF 3+ (x 2) 3 (x 7) 3 (x 4) 3 (x 1) 1.6 1.8 2.0 2.2 2.4 2.6 5000 10000 35000 30000 25000 20000 15000 R (Å) Ta-F Energy (cm-1) 3- (x 5) 3 (x 5) 3 (x 2) 3 3 3 3- The three lowest energy states are 3- , 3 and 3 states

Spectroscopic constants of Λ-S states of 181Ta19F. Re ωe ωeχe Be B0 Dominant configurations 1σ/2σ/1π/1δ in CASSCF w.f. at Re's a)   (cm-1) (Å) (≥ 10%) [1]1Σ+ 6225 1.811 704.1 2.80 0.2990 0.2981 2/0/0/2 (70) + 2/0/2/0 (13) [2]1Σ+ 22306 1.886 630.7 4.08 0.2758 0.2748 1/1/0/2 (34) + 2/0/2/0 (29) + 0/0/2/2 (11) + 1/1/2/0 (10) [1]1Π 8394 1.847 682.1 2.72 0.2873 0.2865 2/0/1/1 (77) [2]1Π 20548 1.917 593.6 2.56 0.2669 0.2660 1/0/1/2 (38) + 2/1/1/0 (27) + 1/1/1/1 (16) [1]3Σ+ 20419 1.904 592.5 2.18 0.2705 0.2697 1/1/0/2 (81) + 1/0/2/1 (12) [2]3Σ+ 21905 1.916 597.5 2.73 0.2670 0.2662 1/0/2/1 (78) [1]3Σ- 1.804 720.1 2.88 0.3012 0.3003 2/0/0/2 (71) + 1/1/0/2 (16) [2]3Σ- 9428 1.905 630.0 2.57 0.2702 0.2694 2/0/2/0 (71) + 1/0/2/1 (13) [3]3Σ- 19126 1.867 648.8 2.54 0.2814 0.2806 1/1/0/2 (74) + 2/0/0/2 (16) [4]3Σ- 23229 1.919 600.8 2.67 0.2661 0.2653 1/0/2/1 (54) + 2/0/0/2 (13) + 2/0/2/0 (12) [5]3Σ- 26081 1.907 576.7 2.36 0.2696 0.2687 1/1/0/2 (82) [1]3Π 3988 1.850 680.8 0.2857 2/0/1/1 (72) + 1/0/1/2 (18) [2]3Π 15219 1.915 578.0 2.41 0.2674 0.2666 2/1/1/0 (39) + 1/0/1/2 (30) + 0/1/1/2 (11) [3]3Π 17209 1.880 640.6 0.2775 0.2767 1/0/1/2 (79) + 1/0/3/0 (11) [4]3Π 20087 1.890 606.2 2.94 0.2745 0.2736 1/0/1/2 (67) + 0/1/1/2 (13) + 1/1/1/1 (11) Lowest [3]3 19657 1.919 642.7 2.89 0.2662 0.2657 1/0/2/1 (56) + 1/0/0/3 (17) + 2/1/0/1 (13) [4]3 22947 1.936 590.1 2.23 0.2615 0.2608 1/0/2/1 (89) [5]3 28590 1.898 638.6 3.99 0.2722 0.2714 1/0/2/1 (45) + 1/0/0/3 (19) + 1/2/0/1 (15) + 0/1/0/3 (10) [1]3Φ 2985 1.849 686.8 2.65 0.2867 0.2859 2/0/1/1 (87) [2]3Φ 17749 1.875 628.9 2.73 0.2789 0.2781 1/0/1/2 (72) + 1/1/1/1 (18) [3]3Φ 24683 1.935 576.7 2.76 0.2618 0.2609 1/1/1/1 (81) [4]3Φ 26501 1.966 547.8 2.07 0.2537 0.2529 1/1/1/1 (79) + 0/1/1/2 (13) 2nd Lowest  

Molecular orbital diagram Dominating electronic configuration gives rise to the ground state of TaF : 1σ21π42σ21d2 ==> X 3Σ- Major electronic configuration gives rise to the second lowest state of TaF : 1σ21π42σ21d12π1 ==> 3 Calculated separation between the two states is 2985 cm-1  

3 3S- Spin-orbit components (ab initio calculations) Labelled by Λ-S states Labelled by  values only  = 4 34 3 1784 cm-1  = 3 33 3308 cm-1 2985  = 1 (3S1- ) 32  = 2 1786 cm-1 3S-  = 0 (3S0- ) (Ground state)   (3S1- doubly degenerate)

Ab initio calculations on TaF  states of TaF 10000 20000 30000 40000 =0+ (x 20) =2 (x 27) 1.6 1.8 2.0 2.2 2.4 2.6 Energy (cm-1) R (Å) Ta-F  = 0  = 2 The two lowest energy states are  = 0 and  = 2 states The  = 0 component is from the 3S0- and  = 2 is from the 32

Calculated separation between the two lowest states is 1650 cm-1 Ω States a Te Re ωe   ωeχe Be B0 Dominant Λ-S states at Re's (cm-1) (Å) (≥ 10%) [1]0+ 1.811 701.3 1.69 0.2989 0.2980 [1]3Σ- (73) + [1]1Σ+ (14) + [1]3Π (12) [2]0+ 4002 1.866 631.9 2.31 0.2815 0.2806 [1]5Π (43) + [1]3Π (35) [3]0+ 6919 1.861 662.9 3.52 0.2831 0.2822 [1]3Π (45) + [1]5Π (38) [4]0+ 9212 1.895 Anharmonic [1]5 (55) + [1]1Σ+ (15) + [2]3Σ- (13) [5]0+ 9738 1.884 683.8 5.36 0.2759 0.2743 (44) + [1]1Σ+ (23) + [2]3Σ- (11) [6]0+ 11569 1.869 732.0 2.62 0.2799 [2]3Σ- (55) + [1]1Σ+ (25) [7]0+ 16659 1.908 573.2 1.61 0.2694 0.2687 [2]3Π (70) + [2]3Σ- (11) [8]0+ 19208 1.896 597.2 3.21 0.2727 0.2714 [3]3Π (41) + [3]3Σ- (22) + [2]5Π (16) + [5]3Π (10) [1]2 1650 1.851 680.6   2.72 0.2863 0.2855 [1]3Φ (91) [2]2 5390 1.867 622.4 2.53 0.2812 0.2803 [1]5Π (44) + [1]3Π (38) [3]2 7249 1.865 667.2 3.32 0.2818 0.2810 [1]3Π (52) + [1]5Π (32) [4]2 10235 1.912 599.4 2.22 0.2681 0.2675 [1]5 (61) + [1]5Σ- (13) [5]2 11464 1.886 610.3 2.48 0.2757 0.2747 [1]5Σ- (30) + [1]1 (28) + [1]3 (17) [6]2 11722 1.890 640.2 2.80 0.2746 0.2738 [1]5Σ- (38) + [1]3 (24) + [1]5 (12) [7]2 13800 1.872 628.8 5.59 0.2797 0.2788 [1]3 (41) + [1]1 (37) [8]2 15992 1.946 562.4 0.52 0.2593 0.2585 [1]5Φ (77) [1]1 1786 1.810 698.4 1.86 0.2993 0.2984 [1]3Σ- (94)   [2]1 3380 1.861 636.4 2.77 0.2831 0.2821 [1]3Π (45) + [1]5Π (23) + [1]1Π (12) [3]1 5031 1.871 643.1 2.24 0.2802 0.2794 [1]5Π (71) + [1]3Π (10) [4]1 6077 1.870 642.5 2.50 0.2805 0.2797 [1]5Π (67) [5]1 9222 1.912 600.3 2.58 0.2682 0.2675 [1]5 (58) + [1]5Φ (11) [6]1 11133 1.886 587.6 0.55 0.2753 0.2745 [2]3Σ- (27) + [1]3 (25) + [1]3Π (20) [7]1 11350 1.891 657.2 5.82 0.2742 0.2732 [1]3 (44) + [2]3Σ- (29) + [1]5 (10) [8]1 11891 599.4 1.44 0.2743 0.2737 [1]5Σ- (59) + [1]5Π (17) [9]1 12630 1.865 678.7 6.40 0.2817 [1]1Π (55) + [1]3 (11) [10]1 14723 1.945 556.2 0.50 0.2596 0.2581 [1]5Φ (77) Calculated separation between the two lowest states is 1650 cm-1   Calculated spin-orbit separation between the is  = 0 and  = 1 components 1786 cm-1

Comparison between theoretic calculation and experimental results  state   T0 r0 G1/2 B0 Components % [21.4] W = 2 a + 21982.90 1.911 537.7 0.2685 (16) 2 23170 1.912 666* 0.2681 (4)3P(33) + (2)5P(25) + (2)3P(11) + (2)3D (11) [22.9] W = 0 22937.47 1.925 0.2644 (12) 0+ 23608 1.901 646* 0.2712 (4)3P(75) [22.1] W = 0 22123.51 1.918 581.0 0.2665 (11) 0+ 22550 1.889 623* 0.2748 (3)3S-(51) + (2)5P(13) [19.9] W = 0 19856.69 1.909 0.2690 (10) 0+ 21582 1.924 587* 0.2649 (5)3P(53) + (2)5P(11) + (4)3S-(10) [19.8] W = 0 19759.82 1.891 597.9 0.2740 (9) 0+ 20151 1.900 626* 0.2715 (3)3P(39) + (2)5P(37) + (5)3P(16) [18.6] W = 0 18626.33 1.890 0.2744 (8) 0+ 19208 597* 0.2714 (3)3P(41) + (3)3S-(22) + (2)5P(16) + (5)3P (10) [18.1] W = 1 18093.46 578.9 (12) 1  18516 1.908 594* 0.2693 (3)3P(39) + (2)3P(33) A3F2 a 1.864 676.0 0.2821 (1) 2 1650 1.853 681* 0.2855 (1)3F(91) X3S- 1.819 697.0 0.2961 (1) 0+ 1.814 701* 0.2980 (1)3S-(73) + (1)1S+(14) + (1)3P(12)

Summary The TaF molecule has been studied experimentally for the first time. The molecular properties of the ground X3S0- state of TaF were determined: bond length 1.8190 Ǻ Detailed ab initio calculations with SOC has been performed and the results agree quite well with experimental determinations The ground state has a dominating electronic configuration (73%) 1σ21π42σ21d2

Thank you for your attention