CS 4100 Artificial Intelligence

Slides:



Advertisements
Similar presentations
Informed search algorithms
Advertisements

Informed search algorithms
Review: Search problem formulation
Informed Search Algorithms
Notes Dijstra’s Algorithm Corrected syllabus.
Informed search strategies
Informed search algorithms
An Introduction to Artificial Intelligence
A* Search. 2 Tree search algorithms Basic idea: Exploration of state space by generating successors of already-explored states (a.k.a.~expanding states).
Problem Solving: Informed Search Algorithms Edmondo Trentin, DIISM.
Informed search algorithms
Solving Problem by Searching
1 Heuristic Search Chapter 4. 2 Outline Heuristic function Greedy Best-first search Admissible heuristic and A* Properties of A* Algorithm IDA*
Properties of breadth-first search Complete? Yes (if b is finite) Time? 1+b+b 2 +b 3 +… +b d + b(b d -1) = O(b d+1 ) Space? O(b d+1 ) (keeps every node.
EIE426-AICV 1 Blind and Informed Search Methods Filename: eie426-search-methods-0809.ppt.
Search Strategies CPS4801. Uninformed Search Strategies Uninformed search strategies use only the information available in the problem definition Breadth-first.
Problem Solving by Searching
SE Last time: Problem-Solving Problem solving: Goal formulation Problem formulation (states, operators) Search for solution Problem formulation:
Review: Search problem formulation
CS 460 Spring 2011 Lecture 3 Heuristic Search / Local Search.
CSC344: AI for Games Lecture 4: Informed search
CS 561, Session 6 1 Last time: Problem-Solving Problem solving: Goal formulation Problem formulation (states, operators) Search for solution Problem formulation:
Rutgers CS440, Fall 2003 Heuristic search Reading: AIMA 2 nd ed., Ch
Informed search algorithms
INTRODUÇÃO AOS SISTEMAS INTELIGENTES Prof. Dr. Celso A.A. Kaestner PPGEE-CP / UTFPR Agosto de 2011.
Informed search algorithms
Informed search algorithms Chapter 4. Outline Best-first search Greedy best-first search A * search Heuristics Memory Bounded A* Search.
Informed search algorithms
Informed search algorithms Chapter 4. Outline Best-first search Greedy best-first search A * search Heuristics.
CHAPTER 4: INFORMED SEARCH & EXPLORATION Prepared by: Ece UYKUR.
1 Shanghai Jiao Tong University Informed Search and Exploration.
Informed search algorithms Chapter 4. Best-first search Idea: use an evaluation function f(n) for each node –estimate of "desirability"  Expand most.
ISC 4322/6300 – GAM 4322 Artificial Intelligence Lecture 3 Informed Search and Exploration Instructor: Alireza Tavakkoli September 10, 2009 University.
Informed search strategies Idea: give the algorithm “hints” about the desirability of different states – Use an evaluation function to rank nodes and select.
Informed Search Strategies Lecture # 8 & 9. Outline 2 Best-first search Greedy best-first search A * search Heuristics.
Review: Tree search Initialize the frontier using the starting state While the frontier is not empty – Choose a frontier node to expand according to search.
Princess Nora University Artificial Intelligence Chapter (4) Informed search algorithms 1.
CSC3203: AI for Games Informed search (1) Patrick Olivier
Informed Search I (Beginning of AIMA Chapter 4.1)
1 Kuliah 4 : Informed Search. 2 Outline Best-First Search Greedy Search A* Search.
Informed Search and Heuristics Chapter 3.5~7. Outline Best-first search Greedy best-first search A * search Heuristics.
4/11/2005EE562 EE562 ARTIFICIAL INTELLIGENCE FOR ENGINEERS Lecture 4, 4/11/2005 University of Washington, Department of Electrical Engineering Spring 2005.
A General Introduction to Artificial Intelligence.
Feng Zhiyong Tianjin University Fall  Best-first search  Greedy best-first search  A * search  Heuristics  Local search algorithms  Hill-climbing.
Best-first search Idea: use an evaluation function f(n) for each node –estimate of "desirability"  Expand most desirable unexpanded node Implementation:
Pengantar Kecerdasan Buatan 4 - Informed Search and Exploration AIMA Ch. 3.5 – 3.6.
Informed Search CSE 473 University of Washington.
Chapter 3.5 and 3.6 Heuristic Search Continued. Review:Learning Objectives Heuristic search strategies –Best-first search –A* algorithm Heuristic functions.
1/27 Informed search algorithms Chapter 4 Modified by Vali Derhami.
CPSC 420 – Artificial Intelligence Texas A & M University Lecture 5 Lecturer: Laurie webster II, M.S.S.E., M.S.E.e., M.S.BME, Ph.D., P.E.
Romania. Romania Problem Initial state: Arad Goal state: Bucharest Operators: From any node, you can visit any connected node. Operator cost, the.
Chapter 3 Solving problems by searching. Search We will consider the problem of designing goal-based agents in observable, deterministic, discrete, known.
Chapter 3.5 Heuristic Search. Learning Objectives Heuristic search strategies –Best-first search –A* algorithm Heuristic functions.
Review: Tree search Initialize the frontier using the starting state
Last time: Problem-Solving
Artificial Intelligence (CS 370D)
Heuristic Search Introduction to Artificial Intelligence
Discussion on Greedy Search and A*
Discussion on Greedy Search and A*
Artificial Intelligence Informed Search Algorithms
EA C461 – Artificial Intelligence
Informed search algorithms
Informed search algorithms
Artificial Intelligence
CSE 473 University of Washington
HW 1: Warmup Missionaries and Cannibals
HW 1: Warmup Missionaries and Cannibals
Artificial Intelligence
Solving Problems by Searching
Informed Search.
Presentation transcript:

CS 4100 Artificial Intelligence Prof. C. Hafner Class Notes Feb 9, 2012

Informed search algorithms

A search strategy is defined by picking the order of node expansion Outline Heuristics Best-first search Greedy best-first search A* search A search strategy is defined by picking the order of node expansion

Best-first search Idea: use an evaluation function f(n) for each node estimate of "desirability“ Expand most desirable unexpanded node Implementation: Order the nodes in fringe in decreasing order of desirability Special cases: greedy best-first search A* search

Romania with step costs in km

Greedy best-first search Evaluation function f(n) = h(n) (heuristic) = estimate of cost from n to goal e.g., hSLD(n) = straight-line distance from n to Bucharest Greedy best-first search expands the node that appears to be closest to goal

Greedy best-first search example

Greedy best-first search example

Greedy best-first search example

Greedy best-first search example

Properties of greedy best-first search Complete? No – can get stuck in loops, e.g., Iasi  Neamt  Iasi  Neamt  Time? O(bm), but a good heuristic can give dramatic improvement Space? O(bm) -- keeps all nodes in memory Optimal? No

A* search Idea: avoid expanding paths that are already expensive Evaluation function f(n) = g(n) + h(n) g(n) = cost so far to reach n h(n) = estimated cost from n to goal f(n) = estimated total cost of path through n to goal

A* search example

A* search example

A* search example

A* search example

A* search example

A* search example

Admissible heuristics A heuristic h(n) is admissible if for every node n, h(n) ≤ h*(n), where h*(n) is the true cost to reach the goal state from n. An admissible heuristic never overestimates the cost to reach the goal, i.e., it is optimistic Example: hSLD(n) (never overestimates the actual road distance) Theorem: If h(n) is admissible, A* using TREE- SEARCH is optimal

Optimality of A* (proof) Suppose some suboptimal goal G2 has been generated and is in the fringe. Let n be an unexpanded node in the fringe such that n is on a shortest path to an optimal goal G. f(G2) > f(G) from above h(n) ≤ h^*(n) since h is admissible g(n) + h(n) ≤ g(n) + h*(n) f(n) ≤ f(G) Hence f(G2) > f(n), and A* will never select G2 for expansion

Consistent heuristics A heuristic is consistent if for every node n, every successor n' of n generated by any action a, h(n) ≤ c(n,a,n') + h(n') If h is consistent, we have f(n') = g(n') + h(n') = g(n) + c(n,a,n') + h(n') ≥ g(n) + h(n) = f(n) i.e., f(n) is non-decreasing along any path. Theorem: If h(n) is consistent, A* using GRAPH-SEARCH is optimal

Properties of A* Complete? Yes (unless there are infinitely many nodes with f ≤ f(G) ) Time? Exponential Space? Keeps all nodes in memory Optimal? Yes

Admissible heuristics E.g., for the 8-puzzle: h1(n) = number of misplaced tiles h2(n) = total Manhattan distance (i.e., no. of squares from desired location of each tile) h1(S) = ? h2(S) = ?

Admissible heuristics E.g., for the 8-puzzle: h1(n) = number of misplaced tiles h2(n) = total Manhattan distance (i.e., no. of squares from desired location of each tile) h1(S) = ? 8 h2(S) = ? 3+1+2+2+2+3+3+2 = 18

Example S E A B F C G D C B A S G D E F 4 5 3 2 6.7 10.4 4.0 11.0 8.9 6.9 3.0 F