Relativistic mean field theory and chiral symmetry for finite nuclei

Slides:



Advertisements
Similar presentations
反対称化分子動力学でテンソル力を取り扱う試 み -更に前進するには?- A. Dote (KEK), Y. Kanada-En ’ yo ( KEK ), H. Horiuchi (Kyoto univ.), Y. Akaishi (KEK), K. Ikeda (RIKEN) 1.Introduction.
Advertisements

RIKEN, March 2006: Mean field theories and beyond Peter Ring RIKEN, March 20, 2006 Technical University Munich RIKEN-06 Beyond Relativistic.
HL-3 May 2006Kernfysica: quarks, nucleonen en kernen1 Outline lecture (HL-3) Structure of nuclei NN potential exchange force Terra incognita in nuclear.
Delta-hole effects on the shell evolution of neutron-rich exotic nuclei Takaharu Otsuka University of Tokyo / RIKEN / MSU Chiral07 Osaka November 12 -
P461 - Nuclei II1 Nuclear Shell Model Potential between nucleons can be studied by studying bound states (pn, ppn, pnn, ppnn) or by scattering cross sections:
Nucleon Optical Potential in Brueckner Theory Wasi Haider Department of Physics, AMU, Aligarh, India. E Mail:
Relativistic chiral mean field model for nuclear physics (II) Hiroshi Toki Research Center for Nuclear Physics Osaka University.
11 Role of tensor force in light nuclei based on the tensor optimized shell model Hiroshi TOKI RCNP, Osaka Univ. Manuel Valverde RCNP, Osaka Univ. Atsushi.
Role of tensor force in He and Li isotopes with tensor optimized shell model Hiroshi TOKI RCNP, Osaka Univ. Kiyomi IKEDA RIKEN Atsushi UMEYA RIKEN Takayuki.
Sigma model and applications 1. The linear sigma model (& NJL model) 2. Chiral perturbation 3. Applications.
1 軽い核におけるテンソル相関と 短距離相関の役割 核子と中間子の多体問題の統一的描像に向けて@ RCNP Tensor correlation for He and Li isotopes in Tensor-Optimized Shell Model (TOSM)
Effects of self-consistence violations in HF based RPA calculations for giant resonances Shalom Shlomo Texas A&M University.
LBL 5/21/2007J.W. Holt1 Medium-modified NN interactions Jeremy W. Holt* Nuclear Theory Group State University of New York * with G.E. Brown, J.D. Holt,
Lecture 20: More on the deuteron 18/11/ Analysis so far: (N.B., see Krane, Chapter 4) Quantum numbers: (J , T) = (1 +, 0) favor a 3 S 1 configuration.
Parton Model & Parton Dynamics Huan Z Huang Department of Physics and Astronomy University of California, Los Angeles Department of Engineering Physics.
0 Yoko Ogawa (RCNP/Osaka) Hiroshi Toki (RCNP/Osaka) Setsuo Tamenaga (RCNP/Osaka) Hong Shen (Nankai/China) Atsushi Hosaka (RCNP/Osaka) Satoru Sugimoto (RIKEN)
Relativistic mean field and RPA with negative energy states for finite nuclei Akihiro Haga, Hiroshi Toki, Setsuo Tamenaga, Yoko Ogawa, Research Center.
Trento, Giessen-BUU: recent progress T. Gaitanos (JLU-Giessen) Model outline Relativistic transport (GiBUU) (briefly) The transport Eq. in relativistic.
We construct a relativistic framework which takes into pionic correlations(2p-2h) account seriously from both interests: 1. The role of pions on nuclei.
Role of vacuum in relativistic nuclear model A. Haga 1, H. Toki 2, S. Tamenaga 2 and Y. Horikawa 3 1. Nagoya Institute of Technology, Japan 2. RCNP Osaka.
Nuclear Symmetry Energy from QCD Sum Rule The 5 th APFB Problem in Physics, August 25, 2011 Kie Sang JEONG Su Houng LEE (Theoretical Nuclear and Hadron.
Cluster aspect of light unstable nuclei
Extended Brueckner-Hartree-Fock theory in many body system - Importance of pion in nuclei - Hiroshi Toki (RCNP, KEK) In collaboration.
Modification of nucleon spectral function in the nuclear medium from QCD sum rules Collaborators: Philipp Gubler(ECT*), Makoto Oka Tokyo Institute of Technology.
Three-body force effect on the properties of asymmetric nuclear matter Wei Zuo Institute of Modern Physics, Lanzhou, China.
July 29-30, 2010, Dresden 1 Forbidden Beta Transitions in Neutrinoless Double Beta Decay Kazuo Muto Department of Physics, Tokyo Institute of Technology.
Matter in the form of toroidal electromagnetic vortices Paper
And Mesons in Strange Hadronic Medium at Finite Temperature and Density Rahul Chhabra (Ph.D student) Department Of Physics NIT Jalandhar India In cooperation.
PKU-CUSTIPEN 2015 Dirac Brueckner Hartree Fock and beyond Herbert Müther Institute of Theoretical Physics.
Strong tensor correlation in light nuclei with tensor-optimized antisymmetrized molecular dynamics (TOAMD) International symposium on “High-resolution.
Tensor Optimized Few-body Model for s-shell nuclei Kaori Horii, Hiroshi Toki (RCNP, Osaka univ.) Takayuki Myo, (Osaka Institute of Technology) Kiyomi Ikeda.
11 Tensor optimized shell model with bare interaction for light nuclei In collaboration with Hiroshi TOKI RCNP, Osaka Univ. Kiyomi IKEDA RIKEN 19th International.
Satoru Sugimoto Kyoto University 1. Introduction 2. Charge- and parity-projected Hartree-Fock method (a mean field type model) and its application to sub-closed.
Nuclear Matter Density Dependence of Nucleon Radius and Mass and Quark Condensates in the GCM of QCD Yu-xin Liu Department of Physics, Peking University.
Department of Physics, Sungkyunkwan University C. Y. Ryu, C. H. Hyun, and S. W. Hong Application of the Quark-meson coupling model to dense nuclear matter.
Accurate vacuum correction in finite nuclei A. Haga 1, H. Toki 1, S. Tamenaga 1, and Y. Horikawa 2 1.RCNP, Osaka Univ. 2.Juntendo Univ.
理論から見たテンソル力 Hiroshi Toki (RCNP, Osaka University) In collaboration with T. Myo (Osaka IT) Y. Ogawa (RCNP) K. Horii (RCNP) K. Ikeda.
Tensor interaction in Extended Brueckner-Hartree-Fock theory Hiroshi Toki (RCNP, Osaka) In collaboration with Yoko Ogawa.
Relativistic EOS for Supernova Simulations
Electric Dipole Response, Neutron Skin, and Symmetry Energy
Structure of the Proton mass
The role of isospin symmetry in medium-mass N ~ Z nuclei
Nuclear structure far from stability
Tensor optimized shell model and role of pion in finite nuclei
Hadron spectroscopy Pentaquarks and baryon resonances
Solving a Half-Century-Old Mystery: Why is There Carbon Dating?
mesons as probes to explore the chiral symmetry in nuclear matter
An isospin-dependent global elastic nucleon-nucleus potential
Hiroshi MASUI Kitami Institute of Technology
Role of Pions in Nuclei and Experimental Characteristics
Relativistic Chiral Mean Field Model for Finite Nuclei
Aspects of the QCD phase diagram
Relativistic extended chiral mean field model for finite nuclei
The Structure of Nuclear force in a chiral quark-diquark model
Check directly vs data That is, apply new effective force directly to calculate nuclear properties using Hartree-Fock (as for usual well known force)
Study of Strange Quark in the Nucleon with Neutrino Scattering
Kernfysica: quarks, nucleonen en kernen
High resolution study of TZ= +3 → +2 Gamow-Teller transitions in the
Nuclear excitations in relativistic nuclear models
Nuclear Forces - Lecture 2 -
Daisuke ABE Department of Physics, University of Tokyo
Pions in nuclei and tensor force
Content of the talk Exotic clustering in neutron-rich nuclei
Kazuo MUTO Tokyo Institute of Technology
Hyun Kyu Lee Hanyang University
A possible approach to the CEP location
Institute of Modern Physics Chinese Academy of Sciences
Theory on Hadrons in nuclear medium
Osaka Institute of Technology
Effects of the φ-meson on the hyperon production in the hyperon star
Presentation transcript:

Relativistic mean field theory and chiral symmetry for finite nuclei Towards unification of hadron and nuclear physics Hiroshi Toki (RCNP-Osaka University) Kiyomi Ikeda (RIKEN & RCNP) Satoru Sugimoto (RIKEN) Yoko Ogawa (RCNP) Setsuo Tamenaga (RCNP) 11/28/2018 Oct. 1 , 2003 RCNP-Osaka

Variational calculation of light nuclei Pion 70 ~ 80 % C. Pieper and R. B. Wiringa, Annu. Rev. Nucl. Part. Sci.51(2001), nucl-th/0103005 11/28/2018 Oct. 1 , 2003 RCNP-Osaka

Chiral perturbation 0- N.Kaiser, S. Fritsch and W.Weise Chiral perturbation 0- N.Kaiser, S. Fritsch and W.Weise N.P.A697(2002)255 11/28/2018 Oct. 1 , 2003 RCNP-Osaka

Deuteron Veff(r ; 3S1) = VC(r ; 3E) + DVeff(r ; 3S1), DVeff(r ; 3S1) = VT (r) 8 w(r) u (r) The 3S1-3D1 coupling due to tensor force leads a large attractive force. 11/28/2018 Oct. 1 , 2003 RCNP-Osaka

Surface pion condensation by Toki, Sugimoto and Ikeda PTP 108 (2002) 903 Lagrangian Mean field equation Wave function 11/28/2018 Oct. 1 , 2003 RCNP-Osaka

Parity Projection 11/28/2018 Oct. 1 , 2003 RCNP-Osaka

O+ and 0- states as brother states 11/28/2018 Oct. 1 , 2003 RCNP-Osaka

5He p1/2 p3/2 s1/2 2 8 20 s1/2 p1/2 p3/2 d3/2 d5/2 f5/2 f7/2 Additional contribution 0- 5He L .S force Full energy gain s1/2 p3/2 p1/2 2 No energy gain blocked 11/28/2018 Oct. 1 , 2003 RCNP-Osaka

Weinberg transformation Chiral sigma model Linear sigma model Lagrangian Polar coordinate Weinberg transformation 11/28/2018 Oct. 1 , 2003 RCNP-Osaka

Non-linear sigma model Lagrangian r = fp + j where M = gsfp M* = M + gs j mp2 = m2 + l fp2 ms2 = m2 +3 l fp2 mw = gwfp mw* = mw + gwj ~ 11/28/2018 Oct. 1 , 2003 RCNP-Osaka

Without omega mass generation term Equation of motion obtained by using the E-L equation in nuclear matter Without omega mass generation term 11/28/2018 Oct. 1 , 2003 RCNP-Osaka

Linear sigma model 11/28/2018 Oct. 1 , 2003 RCNP-Osaka

Nuclear matter Chiral sigma model vs. TM1 Density = 0.1414 fm-3 E/A = -16.14 MeV K = 650 MeV ms = 777 MeV mw = 783 MeV mp = 139 MeV M = 939 MeV fp = 93 MeV l = (ms2 - mp2) / 2fp2 = 33.7847 gs = M / fp = 10.0968 gw = mw / fp = 8.41935 = h gw h = 1.19700 ~ 11/28/2018 Oct. 1 , 2003 RCNP-Osaka

Finite nuclei Nucleon Meson 11/28/2018 Oct. 1 , 2003 RCNP-Osaka

Finite nuclei h = 1.17319 40Ca 56Ni gp = gA/2fp TM1 9.2 40Ca 56Ni 9.0 8.8 8.6 8.4 8.2 8.0 7.8 20 30 40 50 60 70 80 90 A (Mass number) with pion (gA = 1.15) without pion gp = gA/2fp 11/28/2018 Oct. 1 , 2003 RCNP-Osaka

Single particle energy TM1 11/28/2018 Oct. 1 , 2003 RCNP-Osaka

Extended sigma model with pion 11/28/2018 Oct. 1 , 2003 RCNP-Osaka

56Ni Gamow-Teller transition j> and j< couple and hence the selection rule is jj, j+-1 11/28/2018 Oct. 1 , 2003 RCNP-Osaka

11/28/2018 Oct. 1 , 2003 RCNP-Osaka

Experiments Gamow-Teller distribution; Quenching factor=0.5 Longitudinal vs. transverse spin responses High resolution GT excitations H. Fujita et al RCNP 11/28/2018 Oct. 1 , 2003 RCNP-Osaka

Proton inelastic scattering Analyzed by Y. Fujita 11/28/2018 Oct. 1 , 2003 RCNP-Osaka

S1/2 N=0.7 The upper components of 3j1/2 for 56Ni. 11/28/2018 Oct. 1 , 2003 RCNP-Osaka

Magnetic moments for proton 11/28/2018 Oct. 1 , 2003 RCNP-Osaka

Magnetic mements for neutron 11/28/2018 Oct. 1 , 2003 RCNP-Osaka

中性子の単一粒子レベル 11/28/2018 Oct. 1 , 2003 RCNP-Osaka

Lambda Hypernuclei nucleon lambda OZI rule u u d u d s M M u u d u d s g(lambda) = 2/3 g(nucleon) No pion lambda coupling 11/28/2018 Oct. 1 , 2003 RCNP-Osaka

Lambda hypernuclei (Ni56-Lambda) Y.Ogawa et al.(2003) 11/28/2018 Oct. 1 , 2003 RCNP-Osaka

Conclusion Chiral sigma model is extended to include the mass generation term for the omega meson Saturation property is realized with too large a compressibility The magic number effect is generated by surface pion condensation All observables related with tensor force are to be explained by surface pion condensation 11/28/2018 Oct. 1 , 2003 RCNP-Osaka

The spin-orbit splitting of Lambda hyper nuclei is small – This fact indicates that the nuclear spin- orbit splitting is due to surface pion condensation Pion, which is a Goldstone particle of chiral symmetry, plays the major role for hadron and nuclear physics 11/28/2018 Oct. 1 , 2003 RCNP-Osaka

Many home works Parity and charge projection Vacuum polarization Semi-infinite matter Infinite matter with projection Observables Delta and other mesons 11/28/2018 Oct. 1 , 2003 RCNP-Osaka

Result for 4He Volkov No. 1 + G3RS unit: MeV xT 1 1.25 1.5 1.75 2 xTE 0.93 0.88 0.81 0.73 0.64 Central 1 -18.36 -17.42 -15.92 -14.16 -12.07 Central ss -11.72 -11.67 -11.52 -11.26 Central tt -10.31 -9.18 -7.43 -5.28 -2.61 Central ss tt -33.21 -31.81 -29.73 -27.39 -24.75 Central sum -73.60 -70.13 -64.75 -58.34 -50.69 Tensor 1 -0.29 -0.36 -0.43 -0.51 -0.59 Tensor tt -11.98 -19.87 -30.16 -43.36 -59.82 Tensor sum -12.26 -20.23 -30.59 -43.86 -60.41 LS 1 0.71 1.18 1.78 2.55 3.49 LS tt 0.04 0.08 0.13 0.18 0.22 LS sum 0.75 1.26 1.91 2.72 3.72 Coulomb 0.85 0.86 0.87 Potential sum -84.27 -88.26 -92.58 -98.62 -106.51 Kinetic 55.81 59.71 64.39 70.52 78.19 Etotal -28.46 -28.55 -28.19 -28.10 -28.32 rms Rm (fm) 1.64 1.61 1.58 1.55 1.51 <Y|P|Y>/<Y|Y> 0.67 0.62 0.57 0.52 P(-) 0.105 0.133 0.161 0.188 0.214 rms Rmexp = 1.570.04 fm (NPA 693 (2001) 32) 11/28/2018 Oct. 1 , 2003 RCNP-Osaka

Density of 4He XT=1.5 XTE=0.81 0+ 0+ H-F 0- 11/28/2018 Oct. 1 , 2003 RCNP-Osaka

Surface Pion 11/28/2018 Oct. 1 , 2003 RCNP-Osaka