Presentation is loading. Please wait.

Presentation is loading. Please wait.

Solving a Half-Century-Old Mystery: Why is There Carbon Dating?

Similar presentations


Presentation on theme: "Solving a Half-Century-Old Mystery: Why is There Carbon Dating?"— Presentation transcript:

1 Solving a Half-Century-Old Mystery: Why is There Carbon Dating?
R. Machleidt University of Idaho

2 Carbon Dating UI Colloq. 26-Jan-2009
A plain paper … R. Machleidt Carbon Dating UI Colloq. 26-Jan-2009

3 Carbon Dating UI Colloq. 26-Jan-2009
and a lot of fuss … R. Machleidt Carbon Dating UI Colloq. 26-Jan-2009

4 Carbon Dating UI Colloq. 26-Jan-2009
R. Machleidt Carbon Dating UI Colloq. 26-Jan-2009

5 Carbon Dating UI Colloq. 26-Jan-2009
R. Machleidt Carbon Dating UI Colloq. 26-Jan-2009

6 Carbon Dating UI Colloq. 26-Jan-2009
R. Machleidt Carbon Dating UI Colloq. 26-Jan-2009

7 Carbon Dating UI Colloq. 26-Jan-2009
R. Machleidt Carbon Dating UI Colloq. 26-Jan-2009

8 Carbon Dating UI Colloq. 26-Jan-2009
Outline What is C-14 dating? What’s the “mystery”? Beta-decay of a nucleus Calculating the transition C-14  N-14 Brown-Rho scaling of meson masses and the resolution of the mystery Conclusions R. Machleidt Carbon Dating UI Colloq. 26-Jan-2009

9 Some facts about C-14 dating
Discovered in 1949 by Willard Libby, Professor at U. Chicago; Chemistry Nobel Prize 1960. The carbon in the atmosphere (contained in carbon dioxide) includes a small fraction of C-14 (1 part per trillion) which is created in the upper atmosphere by the nuclear reaction n + N-14  p + C-14 where the incident neutron results from cosmic ray interactions. The half-life of C-14 is 5730 years. Organisms, while alive, constantly take up atmospheric carbon dioxide through photosynthesis: 6 CO2 + 6 H2O + Energy  C6H12O6(Glucose) + 6 O2 and, thus, replenish C-14, keeping it at the level of the atmosphere. As soon as the organism is dead, the ratio C-14/C-12 drops because C-14 decays while C-12 is stable. From the ratio, the age of organic remains can be determined: “Carbon dating” Because of the long half-life of C-14, the method is good for dating over archaeological times (up to about 60,000 years). R. Machleidt Carbon Dating UI Colloq. 26-Jan-2009

10 Carbon Dating UI Colloq. 26-Jan-2009
Caves of Lascaux, Southwestern France; about 15,000 B.C. R. Machleidt Carbon Dating UI Colloq. 26-Jan-2009

11 Carbon Dating UI Colloq. 26-Jan-2009
“Kennewick Man”, Kennewick, WA; about 9,000 years old R. Machleidt Carbon Dating UI Colloq. 26-Jan-2009

12 Carbon Dating UI Colloq. 26-Jan-2009
“Shroud of Turin” Is this the shroud in which Jesus Christ was wrapped after his crucifixion? Radiocarbon dating: after Christ R. Machleidt Carbon Dating UI Colloq. 26-Jan-2009

13 Carbon Dating UI Colloq. 26-Jan-2009
What’s the “mystery”? Half-lives of allowed beta-decays of some light nuclei R. Machleidt Carbon Dating UI Colloq. 26-Jan-2009

14 Carbon Dating UI Colloq. 26-Jan-2009
R. Machleidt Carbon Dating UI Colloq. 26-Jan-2009

15 Carbon Dating UI Colloq. 26-Jan-2009
R. Machleidt Carbon Dating UI Colloq. 26-Jan-2009

16 Carbon Dating UI Colloq. 26-Jan-2009
How to calculate this? R. Machleidt Carbon Dating UI Colloq. 26-Jan-2009

17 The transition matrix element
Fermi Gamow-Teller (GT) R. Machleidt Carbon Dating UI Colloq. 26-Jan-2009

18 Carbon Dating UI Colloq. 26-Jan-2009
Conclusion – We have to calculate: R. Machleidt Carbon Dating UI Colloq. 26-Jan-2009

19 Carbon Dating UI Colloq. 26-Jan-2009
R. Machleidt Carbon Dating UI Colloq. 26-Jan-2009

20 Carbon Dating UI Colloq. 26-Jan-2009
All depends on the structure of these two nuclei which, in turn, depends on the forces between the nucleons (“nuclear forces”). R. Machleidt Carbon Dating UI Colloq. 26-Jan-2009

21 Carbon Dating UI Colloq. 26-Jan-2009
The bottom line is, it all depends on nuclear forces; so, what are they like? R. Machleidt Carbon Dating UI Colloq. 26-Jan-2009

22 Summary: Most important parts of the nuclear force
Central force Tensor force: Spin-orbit force: Carbon Dating UI Colloq. 26-Jan-2009 Nuclear Forces - Lecture CNS Summer School 2005

23 Carbon Dating UI Colloq. 26-Jan-2009
… and how are those forces made? Let’s understand this by analogy to the Coulomb force R. Machleidt Carbon Dating UI Colloq. 26-Jan-2009

24 Nucleus: Nuclear forces
The analogy Atom: Coulomb force Nucleus: Nuclear forces γ + - γ p n mesons R. Machleidt Carbon Dating UI Colloq. 26-Jan-2009

25 Summary: Most important parts of the nuclear force
Short Inter- mediate Long range Central force Tensor force: Spin-orbit force: R. Machleidt Carbon Dating UI Colloq. 26-Jan-2009 Carbon Dating UI Colloq. 26-Jan-2009 Nuclear Forces - Lecture CNS Summer School 2005

26 Carbon Dating UI Colloq. 26-Jan-2009
This was the picture in free space. But what happens when two nucleons interact inside a nucleus, surrounded by other nucleons? γ p n γ p n γ p n lighter mesons and nucleons γ p n mesons “Brown-Rho Scaling” with lighter masses R. Machleidt Carbon Dating UI Colloq. 26-Jan-2009

27 Carbon Dating UI Colloq. 26-Jan-2009
R. Machleidt Carbon Dating UI Colloq. 26-Jan-2009

28 Consequences of Brown-Rho scaling for the nuclear force
When the mesons change their mass in the nuclear medium (inside nuclei), then the force changes. One important meson is the rho-meson which is involved in the tensor force: how does its mass-change affect the tensor force? R. Machleidt Carbon Dating UI Colloq. 26-Jan-2009

29 Carbon Dating UI Colloq. 26-Jan-2009
Tensor forces created by rho and pi The medium effect from BRS: tensor force gets weaker with increasing density. R. Machleidt Carbon Dating UI Colloq. 26-Jan-2009

30 Carbon Dating UI Colloq. 26-Jan-2009
Back to the C-14 beta decay How does the weakening of the tensor force affect the Gamow-Teller matrix Element? R. Machleidt Carbon Dating UI Colloq. 26-Jan-2009

31 Carbon Dating UI Colloq. 26-Jan-2009
Increasing density Increasing density R. Machleidt Carbon Dating UI Colloq. 26-Jan-2009

32 Carbon Dating UI Colloq. 26-Jan-2009
R. Machleidt Carbon Dating UI Colloq. 26-Jan-2009

33 Carbon Dating UI Colloq. 26-Jan-2009
Summary The C-14  N-14 transition depends most sensitively on the structure of the N-14 nucleus which, in turn, depends most sensitively on the strength of the nuclear tensor force. In the nuclear medium, the masses of the mesons that “make” nuclear forces change as compared to free space. This “Brown-Rho scaling” of, particularly, the rho-meson mass weakens the tensor force inside the nucleus. This change of the tensor force reduces the GT matrix element and, by that, increases the predicted half-life of C-14 to the experimental value. R. Machleidt Carbon Dating UI Colloq. 26-Jan-2009

34 The more general relevance of all this
This is just one example for the fact that, during the past decade, nuclear theory has made great advances and is now able to produce precise and reliable predictions for even very complicated nuclear structure problems. Thus, in the future, one doesn’t have to do “dirty” and expensive experiments, instead one can use the predictions of a reliable theory. This will have great spin-off, e.g., for the development of the “Fourth Generation of Nuclear Reactors”: Instead of building expensive and potentially dangerous prototypes, one can design the reactor “on the computer” by calculating all the reactions that take place inside the reactor. This is now in reach! R. Machleidt Carbon Dating UI Colloq. 26-Jan-2009

35 Carbon Dating UI Colloq. 26-Jan-2009
The End R. Machleidt Carbon Dating UI Colloq. 26-Jan-2009

36 The reasoning underlying Brown-Rho scaling
At low energy, the chiral symmetry of QCD (in the u/d quark sector) is spontaneously broken. One signature for this is the existence of a quark condensate, which is density dependent and disappears at sufficiently high density (and temperature). By QCD sum rules, the masses of the low-lying hadrons (except the pion) are related to the quark condensate. Consequently, hadron masses may depend on the density of the nuclear medium and decrease with increasing density. For vector meson masses, the following simple density dependence is assumed R. Machleidt Carbon Dating UI Colloq. 26-Jan-2009


Download ppt "Solving a Half-Century-Old Mystery: Why is There Carbon Dating?"

Similar presentations


Ads by Google