Coulomb repulsion and Slater Integrals Maurits W. Haverkort Institute for theoretical physics – Heidelberg University M.W.Haverkort@thphys.uni-heidelberg.de
The Coulomb Integral is nasty: The integrant diverges at r1=r2 Coulomb Hamiltonian: In order to create the Hamiltonian as a matrix we need to evaluate the following integral Solution by Slater: Expand the operator on Spherical Harmonics. Solve the angular part analytical and the Radial integral numerical (Slater Integrals.) Also works in solids. (Spherical Harmonics are not eigen-states, but still a valid basis set.
Coulomb interaction – Slater Integrals Expansion on renormalized Spherical Harmonics with Useful expansion because our basis functions are (close to) spherical
Coulomb interaction – Slater Integrals Integral to calculate Expansion on renormalized Spherical Harmonics
Coulomb interaction – Slater Integrals Radial part: Slater integrals Angular part: Analytical solution
Coulomb interaction – Slater Integrals Graphical representation
Coulomb interaction – Slater Integrals
Coulomb interaction – Slater Integrals Triangular equations
Coulomb interaction – Slater Integrals Parity
Coulomb interaction – Slater Integrals d - electrons
Coulomb interaction – Slater Integrals f - electrons
Coulomb interaction – Slater Integrals Core (p) valence (d) interaction – direct term
Coulomb interaction – Slater Integrals Core (p) valence (d) interaction – exchange term