 Example 1 Matrix Solution of Linear Systems Chapter 7.2 Use matrix row operations to solve the system of equations  2009 PBLPathways.

Presentation on theme: "Example 1 Matrix Solution of Linear Systems Chapter 7.2 Use matrix row operations to solve the system of equations  2009 PBLPathways."— Presentation transcript:

example 1 Matrix Solution of Linear Systems Chapter 7.2 Use matrix row operations to solve the system of equations  2009 PBLPathways

Use matrix row operations to solve the system of equations

 2009 PBLPathways Use matrix row operations to solve the system of equations R1  R2

 2009 PBLPathways Use matrix row operations to solve the system of equations R1  R2

 2009 PBLPathways Use matrix row operations to solve the system of equations R1  R2

 2009 PBLPathways -1 R2  R2 -2 R1 + R2  R2 -3 R1 + R3  R3

 2009 PBLPathways -1 R2  R2 -2 R1 + R2  R2 -3 R1 + R3  R3

 2009 PBLPathways -1 R2  R2 -2 R1 + R2  R2 -3 R1 + R3  R3

 2009 PBLPathways -1 R2  R2 -2 R1 + R2  R2 -3 R1 + R3  R3

 2009 PBLPathways -1 R2  R2 -2 R1 + R2  R2 -3 R1 + R3  R3

 2009 PBLPathways -1 R2  R2 -2 R1 + R2  R2 -3 R1 + R3  R3

 2009 PBLPathways -1 R2  R2 -2 R1 + R2  R2 -3 R1 + R3  R3

 2009 PBLPathways -1 R2  R2 -2 R1 + R2  R2 -3 R1 + R3  R3

 2009 PBLPathways -1 R2  R2 -2 R1 + R2  R2 -3 R1 + R3  R3

 2009 PBLPathways -1 R2  R2 -2 R1 + R2  R2 -3 R1 + R3  R3

 2009 PBLPathways -4 R2 + R3  R3 R3  R3

 2009 PBLPathways -4 R2 + R3  R3 R3  R3

 2009 PBLPathways -4 R2 + R3  R3 R3  R3

 2009 PBLPathways -4 R2 + R3  R3 R3  R3

 2009 PBLPathways -4 R2 + R3  R3 R3  R3

 2009 PBLPathways -4 R2 + R3  R3 R3  R3

 2009 PBLPathways -4 R2 + R3  R3 R3  R3

 2009 PBLPathways -4 R2 + R3  R3 R3  R3

 2009 PBLPathways -4 R2 + R3  R3 R3  R3

 2009 PBLPathways -4 R2 + R3  R3 R3  R3

 2009 PBLPathways -4 R2 + R3  R3 R3  R3

 2009 PBLPathways -4 R2 + R3  R3 R3  R3

Download ppt "Example 1 Matrix Solution of Linear Systems Chapter 7.2 Use matrix row operations to solve the system of equations  2009 PBLPathways."

Similar presentations