Dictionaries and Hash Tables

Slides:



Advertisements
Similar presentations
© 2004 Goodrich, Tamassia Hash Tables
Advertisements

© 2004 Goodrich, Tamassia Hash Tables
Dictionaries 4/1/2017 2:36 PM Hash Tables  …
© 2004 Goodrich, Tamassia Hash Tables1  
Chapter 2.5: Dictionaries and Hash Tables  
Chapter 9: Maps, Dictionaries, Hashing Nancy Amato Parasol Lab, Dept. CSE, Texas A&M University Acknowledgement: These slides are adapted from slides provided.
Maps. Hash Tables. Dictionaries. 2 CPSC 3200 University of Tennessee at Chattanooga – Summer 2013 © 2010 Goodrich, Tamassia.
Data Structures Lecture 12 Fang Yu Department of Management Information Systems National Chengchi University Fall 2010.
Log Files. O(n) Data Structure Exercises 16.1.
CSC401 – Analysis of Algorithms Lecture Notes 5 Heaps and Hash Tables Objectives: Introduce Heaps, Heap-sorting, and Heap- construction Analyze the performance.
Dictionaries and Hash Tables1  
Hash Tables1 Part E Hash Tables  
Hash Tables1 Part E Hash Tables  
Hash Tables1 Part E Hash Tables  
Hashing General idea: Get a large array
Dictionaries 4/17/2017 3:23 PM Hash Tables  
Maps, Hash Tables and Dictionaries Chapter 10.1, 10.2, 10.3, 10.5.
Maps, Dictionaries, Hashing
1. 2 Problem RT&T is a large phone company, and they want to provide enhanced caller ID capability: –given a phone number, return the caller’s name –phone.
CS 221 Analysis of Algorithms Data Structures Dictionaries, Hash Tables, Ordered Dictionary and Binary Search Trees.
1 HashTable. 2 Dictionary A collection of data that is accessed by “key” values –The keys may be ordered or unordered –Multiple key values may/may-not.
Hash Tables1   © 2010 Goodrich, Tamassia.
Dictionaries and Hash Tables1 Hash Tables  
1 HASHING Course teacher: Moona Kanwal. 2 Hashing Mathematical concept –To define any number as set of numbers in given interval –To cut down part of.
© 2004 Goodrich, Tamassia Hash Tables1  
CHAPTER 9 HASH TABLES, MAPS, AND SKIP LISTS ACKNOWLEDGEMENT: THESE SLIDES ARE ADAPTED FROM SLIDES PROVIDED WITH DATA STRUCTURES AND ALGORITHMS IN C++,
Chapter 2.5: Dictionaries and Hash Tables  
Prof. Amr Goneid, AUC1 CSCI 210 Data Structures and Algorithms Prof. Amr Goneid AUC Part 5. Dictionaries(2): Hash Tables.
Lecture14: Hashing Bohyung Han CSE, POSTECH CSED233: Data Structures (2014F)
Hash Maps Rem Collier Room A1.02 School of Computer Science and Informatics University College Dublin, Ireland.
Algorithms Design Fall 2016 Week 6 Hash Collusion Algorithms and Binary Search Trees.
Hash Tables 1/28/2018 Presentation for use with the textbook Data Structures and Algorithms in Java, 6th edition, by M. T. Goodrich, R. Tamassia, and M.
Maps 1/28/2018 Presentation for use with the textbook Data Structures and Algorithms in Java, 6th edition, by M. T. Goodrich, R. Tamassia, and M. H. Goldwasser,
Hashing (part 2) CSE 2011 Winter March 2018.
CSCI 210 Data Structures and Algorithms
Hashing CSE 2011 Winter July 2018.
Hashing Alexandra Stefan.
Hashing Alexandra Stefan.
Dictionaries and Hash Tables
Dictionaries Dictionaries 07/27/16 16:46 07/27/16 16:46 Hash Tables 
© 2013 Goodrich, Tamassia, Goldwasser
Dictionaries 9/14/ :35 AM Hash Tables   4
Hash Tables 3/25/15 Presentation for use with the textbook Data Structures and Algorithms in Java, 6th edition, by M. T. Goodrich, R. Tamassia, and M.
Searching.
Data Structures and Database Applications Hashing and Hashtables in C#
Hash Table.
Hash Table.
Chapter 2, Sections 4 and 5 Priority Queues Heaps Dictionaries
Dictionaries < > = Dictionaries Dictionaries
Data Structures Maps and Hash.
Data Structures and Database Applications Hashing and Hashtables in C#
Hash Tables 11/22/2018 3:15 AM Hash Tables  1 2  3  4
Dictionaries 11/23/2018 5:34 PM Hash Tables   Hash Tables.
Copyright © Aiman Hanna All rights reserved
Dictionaries < > = /3/2018 8:58 AM Dictionaries
Hash Tables   Maps Dictionaries 12/7/2018 5:58 AM Hash Tables  
CH 9.2 : Hash Tables Acknowledgement: These slides are adapted from slides provided with Data Structures and Algorithms in C++, Goodrich, Tamassia and.
Dictionaries < > = /9/2018 3:06 AM Dictionaries
Dictionaries and Hash Tables
Dictionaries 1/17/2019 7:55 AM Hash Tables   4
CH 9.2 : Hash Tables Acknowledgement: These slides are adapted from slides provided with Data Structures and Algorithms in C++, Goodrich, Tamassia and.
Dictionaries < > = /17/2019 4:20 PM Dictionaries
Hash Tables Computer Science and Engineering
Dictionaries and Hash Tables
Hash Tables Computer Science and Engineering
Hash Tables Computer Science and Engineering
Dictionaries 4/5/2019 1:49 AM Hash Tables  
CS210- Lecture 17 July 12, 2005 Agenda Collision Handling
CS210- Lecture 16 July 11, 2005 Agenda Maps and Dictionaries Map ADT
Dictionaries and Hash Tables
Presentation transcript:

Dictionaries and Hash Tables 11/27/2018 12:41 PM Dictionaries and Hash Tables  1 025-612-0001 2 981-101-0002 3  4 451-229-0004 Dictionaries and Hash Tables

Dictionaries and Hash Tables Dictionary ADT (§2.5.1) The dictionary ADT models a searchable collection of key-element items The main operations of a dictionary are searching, inserting, and deleting items Multiple items with the same key are allowed Applications: address book credit card authorization mapping host names (e.g., cs16.net) to internet addresses (e.g., 128.148.34.101) Dictionary ADT methods: findElement(k): if the dictionary has an item with key k, returns its element, else, returns the special element NO_SUCH_KEY insertItem(k, o): inserts item (k, o) into the dictionary removeElement(k): if the dictionary has an item with key k, removes it from the dictionary and returns its element, else returns the special element NO_SUCH_KEY size(), isEmpty() keys(), Elements() Dictionaries and Hash Tables

Dictionaries and Hash Tables Log File (§2.5.1) A log file is a dictionary implemented by means of an unsorted sequence We store the items of the dictionary in a sequence (based on a doubly-linked lists or a circular array), in arbitrary order Performance: insertItem takes O(1) time since we can insert the new item at the beginning or at the end of the sequence findElement and removeElement take O(n) time since in the worst case (the item is not found) we traverse the entire sequence to look for an item with the given key The log file is effective only for dictionaries of small size or for dictionaries on which insertions are the most common operations, while searches and removals are rarely performed (e.g., historical record of logins to a workstation) Dictionaries and Hash Tables

Hash Functions and Hash Tables (§2.5.2) A hash function h maps keys of a given type to integers in a fixed interval [0, N - 1] Example: h(x) = x mod N is a hash function for integer keys The integer h(x) is called the hash value of key x A hash table for a given key type consists of Hash function h Array (called table) of size N When implementing a dictionary with a hash table, the goal is to store item (k, o) at index i = h(k) Dictionaries and Hash Tables

Dictionaries and Hash Tables Example We design a hash table for a dictionary storing items (SSN, Name), where SSN (social security number) is a nine-digit positive integer Our hash table uses an array of size N = 10,000 and the hash function h(x) = last four digits of x  1 2 3 4 9997 9998 9999 … 451-229-0004 981-101-0002 200-751-9998 025-612-0001 Dictionaries and Hash Tables

Dictionaries and Hash Tables Hash Functions (§ 2.5.3) A hash function is usually specified as the composition of two functions: Hash code map: h1: keys  integers Compression map: h2: integers  [0, N - 1] The hash code map is applied first, and the compression map is applied next on the result, i.e., h(x) = h2(h1(x)) The goal of the hash function is to “disperse” the keys in an apparently random way Dictionaries and Hash Tables

Dictionaries and Hash Tables Hash Code Maps (§2.5.3) Memory address: We reinterpret the memory address of the key object as an integer (default hash code of all Java objects) Good in general, except for numeric and string keys Integer cast: We reinterpret the bits of the key as an integer Suitable for keys of length less than or equal to the number of bits of the integer type (e.g., byte, short, int and float in Java) Component sum: We partition the bits of the key into components of fixed length (e.g., 16 or 32 bits) and we sum the components (ignoring overflows) Suitable for numeric keys of fixed length greater than or equal to the number of bits of the integer type (e.g., long and double in Java) Dictionaries and Hash Tables

Dictionaries and Hash Tables Hash Code Maps (cont.) Polynomial accumulation: We partition the bits of the key into a sequence of components of fixed length (e.g., 8, 16 or 32 bits) a0 a1 … an-1 We evaluate the polynomial p(z) = a0 + a1 z + a2 z2 + … … + an-1zn-1 at a fixed value z, ignoring overflows Especially suitable for strings (e.g., the choice z = 33 gives at most 6 collisions on a set of 50,000 English words) Polynomial p(z) can be evaluated in O(n) time using Horner’s rule: The following polynomials are successively computed, each from the previous one in O(1) time p0(z) = an-1 pi (z) = an-i-1 + zpi-1(z) (i = 1, 2, …, n -1) We have p(z) = pn-1(z) Dictionaries and Hash Tables

Dictionaries and Hash Tables Compression Maps (§2.5.4) Division: h2 (y) = y mod N The size N of the hash table is usually chosen to be a prime The reason has to do with number theory and is beyond the scope of this course Multiply, Add and Divide (MAD): h2 (y) = (ay + b) mod N a and b are nonnegative integers such that a mod N  0 Otherwise, every integer would map to the same value b Dictionaries and Hash Tables

Collision Handling (§ 2.5.5) Collisions occur when different elements are mapped to the same cell Chaining: let each cell in the table point to a linked list of elements that map there  1 2 3 4 451-229-0004 981-101-0004 025-612-0001 Chaining is simple, but requires additional memory outside the table Dictionaries and Hash Tables

Dictionaries and Hash Tables Linear Probing (§2.5.5) Open addressing: the colliding item is placed in a different cell of the table Linear probing handles collisions by placing the colliding item in the next (circularly) available table cell Each table cell inspected is referred to as a “probe” Colliding items lump together, causing future collisions to cause a longer sequence of probes Example: h(x) = x mod 13 Insert keys 18, 41, 22, 44, 59, 32, 31, 73, in this order 1 2 3 4 5 6 7 8 9 10 11 12 41 18 44 59 32 22 31 73 1 2 3 4 5 6 7 8 9 10 11 12 Dictionaries and Hash Tables

Search with Linear Probing Consider a hash table A that uses linear probing findElement(k) We start at cell h(k) We probe consecutive locations until one of the following occurs An item with key k is found, or An empty cell is found, or N cells have been unsuccessfully probed Algorithm findElement(k) i  h(k) p  0 repeat c  A[i] if c =  return NO_SUCH_KEY else if c.key () = k return c.element() else i  (i + 1) mod N p  p + 1 until p = N Dictionaries and Hash Tables

Updates with Linear Probing To handle insertions and deletions, we introduce a special object, called AVAILABLE, which replaces deleted elements removeElement(k) We search for an item with key k If such an item (k, o) is found, we replace it with the special item AVAILABLE and we return element o Else, we return NO_SUCH_KEY insert Item(k, o) We throw an exception if the table is full We start at cell h(k) We probe consecutive cells until one of the following occurs A cell i is found that is either empty or stores AVAILABLE, or N cells have been unsuccessfully probed We store item (k, o) in cell i Dictionaries and Hash Tables

Dictionaries and Hash Tables Double Hashing Double hashing uses a secondary hash function d(k) and handles collisions by placing an item in the first available cell of the series (i + jd(k)) mod N for j = 0, 1, … , N - 1 The secondary hash function d(k) cannot have zero values The table size N must be a prime to allow probing of all the cells Common choice of compression map for the secondary hash function: d2(k) = q - k mod q where q < N q is a prime The possible values for d2(k) are 1, 2, … , q Dictionaries and Hash Tables

Example of Double Hashing Consider a hash table storing integer keys that handles collision with double hashing N = 13 h(k) = k mod 13 d(k) = 7 - k mod 7 Insert keys 18, 41, 22, 44, 59, 32, 31, 73, in this order 1 2 3 4 5 6 7 8 9 10 11 12 31 41 18 32 59 73 22 44 1 2 3 4 5 6 7 8 9 10 11 12 Dictionaries and Hash Tables

Performance of Hashing In the worst case, searches, insertions and removals on a hash table take O(n) time The worst case occurs when all the keys inserted into the dictionary collide The load factor a = n/N affects the performance of a hash table Assuming that the hash values are like random numbers, it can be shown that the expected number of probes for an insertion with open addressing is 1 / (1 - a) The expected running time of all the dictionary ADT operations in a hash table is O(1) In practice, hashing is very fast provided the load factor is not close to 100% Applications of hash tables: small databases compilers browser caches Dictionaries and Hash Tables

Dictionaries and Hash Tables Universal Hashing (§ 2.5.6) A family of hash functions is universal if, for any 0<i,j<M-1, Pr(h(j)=h(k)) < 1/N. Choose p as a prime between M and 2M. Randomly select 0<a<p and 0<b<p, and define h(k)=(ak+b mod p) mod N Theorem: The set of all functions, h, as defined here, is universal. Dictionaries and Hash Tables

Proof of Universality (Part 1) Let f(k) = ak+b mod p Let g(k) = k mod N So h(k) = g(f(k)). f causes no collisions: Let f(k) = f(j). Suppose k<j. Then So a(j-k) is a multiple of p But both are less than p So a(j-k) = 0. I.e., j=k. (contradiction) Thus, f causes no collisions. Dictionaries and Hash Tables

Proof of Universality (Part 2) If f causes no collisions, only g can make h cause collisions. Fix a number x. Of the p integers y=f(k), different from x, the number such that g(y)=g(x) is at most Since there are p choices for x, the number of h’s that will cause a collision between j and k is at most There are p(p-1) functions h. So probability of collision is at most Therefore, the set of possible h functions is universal. Dictionaries and Hash Tables