Earthquakes.

Slides:



Advertisements
Similar presentations
EARTHQUAKES.
Advertisements

What are Earthquakes? The shaking or trembling caused by the sudden release of energy Usually associated with faulting or breaking of rocks Continuing.
Earthquakes Waves & Seismograms Lecture prepared by Mr. B.
What are Earthquakes? The shaking or trembling caused by the sudden release of energy Usually associated with faulting or breaking of rocks Continuing.
Earthquakes Chapter 16. What is an earthquake? An earthquake is the vibration of Earth produced by the rapid release of energy Energy radiates in all.
What are Earthquakes? The shaking or trembling caused by the sudden release of energy Usually associated with faulting or breaking of rocks Continuing.
NOTES. What are Earthquakes? A vibration of Earth’s crust caused by a sudden release of energy Caused by faulting or breaking of rocks Aftershocks – continued.
 By the end of this unit, you should be able to:  Discuss stress and strain and their roles in earthquakes  Know the differences between elastic and.
The shaking or trembling caused by the sudden release of energy Usually associated with faulting or breaking of rocks Continuing adjustment of position.
What are Earthquakes? A sudden motion or shaking in the Earth caused by the abrupt release of slowly accumulated strain. Usually associated with faulting.
What are Earthquakes? The shaking or trembling caused by the sudden release of energy Usually associated with faulting or breaking of rocks Continuing.
PHS Geography Department Physical Geography/Natural Disasters.
Some information from: www. floyd. k12. va
We’ve looked at plate tectonics... Now lets look at a possible outcome:
San Francisco earthquake. 2 What are Earthquakes? The shaking or trembling caused by the sudden release of energy Lithospheric plates move suddenly.
2010 Catastrophic Haiti Earthquake 7.0 M w. January 12, :53 UTC.
WRITE EVERYTHING IN YELLOW!. The Focus and Epicenter of an Earthquake The point within Earth where rock under stress breaks and triggers and earthquake.
Earthquakes Chapter 16 In Textbook. What Is An Earthquake? What Is An Earthquake? An earthquake is the vibration of Earth produced by the rapid release.
 By the end of this unit, you should be able to:  Discuss stress and strain and their roles in earthquakes  Identify and describe the 3 types of faults.
What are Earthquakes? The shaking or trembling caused by the sudden release of energy Usually associated with faulting or breaking of rocks Continuing.
EARTHQUAKES. WHAT ARE EARTHQUAKES?  Shaking or trembling caused by the sudden release of energy  Usually associated with faulting or breaking of rocks.
What are Earthquakes? The shaking or trembling caused by the sudden release of energy Usually associated with faulting or breaking of rocks Continuing.
The Focus and Epicenter of an Earthquake The point within Earth where rock under stress breaks is called the focus The point directly above the focus on.
What are Earthquakes? The shaking or trembling caused by the sudden release of energy Usually associated with faulting or breaking of rocks Continuing.
How is an Earthquake’s Epicenter Located? Seismic wave behavior –P waves arrive first, then S waves, then L and R –Average speeds for all these waves is.
What are Earthquakes? The shaking or trembling caused by the sudden release of energy Usually associated with faulting or breaking of rocks Continuing.
What are Earthquakes? The shaking or trembling caused by the sudden release of energy Usually associated with faulting or breaking of rocks Continuing.
Question of the Day What is a natural disaster?
What are Earthquakes? The shaking or trembling caused by the sudden release of energy Usually associated with faulting or breaking of rocks Continuing.
What is an Earthquake? Goal 
Unit 4 Lesson 6 Measuring Earthquake Waves
What are Earthquakes? The shaking or trembling caused by the sudden release of energy Usually associated with faulting or breaking of rocks Continuing.
What are Earthquakes? The shaking or trembling caused by the sudden release of energy Usually associated with faulting or breaking of rocks Continuing.
What are Earthquakes? The shaking or trembling caused by the sudden release of energy Usually associated with lithospheric plates moving against each other.
Earthquake Magnitude and Intensity
What are Earthquakes? The shaking or trembling caused by the sudden release of energy Usually associated with faulting or breaking of rocks Continuing.
What are Earthquakes?
Unit 4 Lesson 6 Measuring Earthquake Waves
What are the Destructive Effects of Earthquakes?
What are Earthquakes? The shaking or trembling caused by the sudden release of energy Usually associated with faulting or breaking of rocks Continuing.
Seismicity & Earthquakes
What are Earthquakes? The shaking or trembling caused by the sudden release of energy Usually associated with faulting or breaking of rocks Continuing.
What are Earthquakes?(definition)
Earth Quakes.
Earthquakes and More.
What are Earthquakes? The shaking or trembling caused by the sudden release of energy Usually associated with faulting or breaking of rocks Continuing.
The Focus and Epicenter of an Earthquake
What are Earthquakes? The shaking or trembling caused by the sudden release of energy Usually associated with faulting or breaking of rocks Continuing.
Mr. Ahearn Earth Science 2014
Click on picture for video
What are Earthquakes? The shaking or trembling caused by the sudden release of energy Usually associated with faulting or breaking of rocks Continuing.
Earthquakes.
Do First Questions: What mechanical layer of the Earth are plates made of? What mechanical layer of the Earth is moving causing the plates to move?
What are Earthquakes? The shaking or trembling caused by the sudden release of energy Usually associated with faulting or breaking of rocks Continuing.
What are Earthquakes? The shaking or trembling caused by the sudden release of energy Usually associated with faulting or breaking of rocks Continuing.
What are Earthquakes? The shaking or trembling caused by the sudden release of energy Usually associated with faulting or breaking of rocks Continuing.
earthquake: shaking and trembling that results from sudden movement of part of the Earth’s crust
Earthquakes.
What are Earthquakes? The shaking or trembling caused by the sudden release of energy Usually associated with faulting or breaking of rocks Continuing.
Do First Questions: What mechanical layer of the Earth are plates made of? What mechanical layer of the Earth is moving causing the plates to move?
What are Earthquakes? The shaking or trembling caused by the sudden release of energy Usually associated with faulting or breaking of rocks Continuing.
What are Earthquakes? The shaking or trembling caused by the sudden release of energy Usually associated with faulting or breaking of rocks Continuing.
What are Earthquakes? The shaking or trembling caused by the sudden release of energy Usually associated with faulting or breaking of rocks Continuing.
Unit 4 Lesson 6 Measuring Earthquake Waves
Whole Lot of Shaking Going On
What are Earthquakes? The shaking or trembling caused by the sudden release of energy Usually associated with faulting or breaking of rocks Continuing.
When This Crust is a Rockin’
What are Earthquakes? The shaking or trembling caused by the sudden release of energy Usually associated with faulting or breaking of rocks Continuing.
Faults and Earthquakes
Presentation transcript:

Earthquakes

What are Earthquakes? The shaking or trembling caused by the sudden release of energy Usually associated with faulting or breaking of rocks Continuing adjustment of position results in aftershocks

What is the Elastic Rebound Theory? Explains how energy is stored in rocks Rocks bend until the strength of the rock is exceeded Rupture occurs and the rocks quickly rebound to an undeformed shape Energy is released in waves that radiate outward from the fault

The Focus and Epicentre of an Earthquake The point within Earth where faulting begins is the focus, or hypocenter The point directly above the focus on the surface is the epicentre

Seismographs record earthquake events At convergent boundaries, focal depth increases along a dipping seismic zone called a Benioff zone

Where Do Earthquakes Occur and How Often? ~80% of all earthquakes occur in the circum-Pacific belt most of these result from convergent margin activity ~15% occur in the Mediterranean-Asiatic belt remaining 5% occur in the interiors of plates and on spreading ridge centers more than 150,000 quakes strong enough to be felt are recorded each year

The Economics and Societal Impacts of EQs Damage in Oakland, CA, 1989 Building collapse Fire Tsunami Ground failure

What are Seismic Waves? Response of material to the arrival of energy fronts released by rupture Two types: Body waves P and S Surface waves R and L

Body Waves: P and S waves P or primary waves fastest waves travel through solids, liquids, or gases compressional wave, material movement is in the same direction as wave movement S or secondary waves slower than P waves travel through solids only shear waves - move material perpendicular to wave movement

Surface Waves: R and L waves Travel just below or along the ground’s surface Slower than body waves; rolling and side-to-side movement Especially damaging to buildings

How is an Earthquake’s Epicenter Located? Seismic wave behavior P waves arrive first, then S waves, then L and R Average speeds for all these waves is known After an earthquake, the difference in arrival times at a seismograph station can be used to calculate the distance from the seismograph to the epicenter.

How is an Earthquake’s Epicenter Located? Time-distance graph showing the average travel times for P- and S-waves. The farther away a seismograph is from the focus of an earthquake, the longer the interval between the arrivals of the P- and S- waves

How is an Earthquake’s Epicenter Located? Three seismograph stations are needed to locate the epicenter of an earthquake A circle where the radius equals the distance to the epicenter is drawn The intersection of the circles locates the epicenter

How are the Size and Strength of an Earthquake Measured? Intensity subjective measure of the kind of damage done and people’s reactions to it isoseismal lines identify areas of equal intensity Modified Mercalli Intensity Map 1994 Northridge, CA earthquake, magnitude 6.7

How are the Size and Strength of an Earthquake Measured? Magnitude Richter scale measures total amount of energy released by an earthquake; independent of intensity Amplitude of the largest wave produced by an event is corrected for distance and assigned a value on an open-ended logarithmic scale

How are the Size and Strength of an Earthquake Measured? The Richter Scale is the most widely used scale. However, it has been shown to have limitations (this scale does not indicate accurately the amounts of energy released in very large earthquakes). Another measure used is Moment Magnitude, which measures the energy released at the Earthquake’s source. Moment magnitude more accurately indicates the total energy involved in the earthquake. Earthquake Richter Magnitude Moment Magnitude San Franciso 1906 8.3 7.9 Alaska 1964 8.5 9.2

What are the Destructive Effects of Earthquakes? Ground Shaking produced by the waves set in motion by an earthquake’s sudden release of energy. most buildings can withstand fairly violent up-and-down shaking; however, few buildings can survive side-to-side shaking.

What are the Destructive Effects of Earthquakes? Ground Shaking severe ground shaking can result in Liquefaction. this is where soil temporarily takes on some of the properties of a liquid due to the movement of the ground. https://www.youtube.com/watch?v=qmVYbjiNWds

What are the Destructive Effects of Earthquakes? Aftershocks large earthquakes may be followed by a series of smaller ones originating close to the focus of the larger earthquake. These aftershocks can be a great as 1000 per day.

What are the Destructive Effects of Earthquakes? Tsunamis underwater earthquakes, landslides or large coastal earthquakes can sometimes cause a huge ocean wave to form they can travel very quickly across large expanses of water its speed depends on the depth of water (avg. ocean depth = 4500m; results in tsunami speed = 750km/hr) in shallower water the tsunami speed decreases and the size of the wave increases dramatically in height.

Can Earthquakes be Predicted? Earthquake Precursors changes in elevation or tilting of land surface, fluctuations in groundwater levels, magnetic field, electrical resistance of the ground seismic dilatancy model seismic gaps dilatancy, where rock stressed to near its breaking point expands (dilates) slightly seismic gap is a segment of an active fault known to produce significant earthquakes that has not slipped in an unusually long time, compared with other segments along the same structure.

Can Earthquakes be Predicted? Earthquake Prediction Programs include laboratory and field studies of rocks before, during, and after earthquakes monitor activity along major faults produce risk assessments

Can Earthquakes be Controlled? Graph showing the relationship between the amount of waste injected into wells per month and the average number of Denver earthquakes per month Some have suggested that pumping fluids into seismic gaps will cause small earthquakes while preventing large ones