Charles R. Markus, Adam J. Perry, James N. Hodges, Benjamin J. McCall

Slides:



Advertisements
Similar presentations
Direct Frequency Comb Spectroscopy for the Study of Molecular Dynamics in the Infrared Fingerprint Region Adam J. Fleisher, Bryce Bjork, Kevin C. Cossel,
Advertisements

Development of an External Cavity Quantum Cascade Laser for High- Resolution Spectroscopy of Molecular Ions JACOB T. STEWART, BRADLEY M. GIBSON, BENJAMIN.
Brian Siller, Andrew Mills & Benjamin McCall University of Illinois at Urbana-Champaign.
PRECISION CAVITY ENHANCED VELOCITY MODULATION SPECTROSCOPY Andrew A. Mills, Brian M. Siller, Benjamin J. McCall University of Illinois, Department of Chemistry.
High-speed ultrasensitive measurements of trace atmospheric species 250 spectra in 0.7 s David A. Long A. J. Fleisher, D. F. Plusquellic, J. T. Hodges.
Towards High Resolution Cavity Enhanced Spectroscopy with Fast ion Beams Andrew Mills, Brian Siller, Manori Perera, Holger Kreckel, Ben McCall.
Holger Kreckel, Andrew Mills, Manori Perera, Brian Siller, Kyle Crabtree, Carrie Kauffman, Benjamin J. McCall University of Illinois at Urbana-Champaign.
Molecular Spectroscopy Symposium June 2011 ROTATIONAL SPECTROSCOPY OF HD 18 O John C. Pearson, Shanshan Yu, Harshal Gupta, and Brian J. Drouin,
Spectroscopy with comb-referenced diode lasers
New High Precision Linelist of H 3 + James N. Hodges, Adam J. Perry, Charles R. Markus, Paul A. Jenkins II, G. Stephen Kocheril, and Benjamin J. McCall.
High Precision Mid-Infrared Spectroscopy of 12 C 16 O 2 : Progress Report Speaker: Wei-Jo Ting Department of Physics National Tsing Hua University
Mid-IR ethene detection using a quasi-phase matched LiNbO 3 waveguide 64th OSU International Symposium on Molecular Spectroscopy 23 rd June 2009.
Brian Siller, Andrew Mills, Michael Porambo & Benjamin McCall University of Illinois at Urbana-Champaign.
Brian Siller, Andrew Mills, Michael Porambo & Benjamin McCall Chemistry Department, University of Illinois at Urbana-Champaign.
Sub-Doppler Spectroscopy of Molecular Ions in the Mid-IR James N. Hodges, Kyle N. Crabtree, & Benjamin J. McCall WI06 – June 20, 2012 University of Illinois.
Lineshape and Sensitivity of Spectroscopic Signals of N 2 + in a Positive Column Collected Using NICE-OHVMS Michael Porambo, Andrew Mills, Brian Siller,
Lineshape and Sensitivity of Spectroscopic Signals of N 2 + in a Positive Column Collected Using NICE-OHVMS Michael Porambo, Andrew Mills, Brian Siller,
HIGH PRECISION MID-IR SPECTROSCOPY OF N2O NEAR 4.5 μm Wei-jo (Vivian) Ting and Jow-Tsong Shy Department of Physics National Tsing Hua University Hsinchu,
Precision Measurement of CO 2 Hotband Transition at 4.3  m Using a Hot Cell PEI-LING LUO, JYUN-YU TIAN, HSHAN-CHEN CHEN, Institute of Photonics Technologies,
High-Precision Sub-Doppler Infrared Spectroscopy of HeH + Adam J. Perry, James N. Hodges, Charles Markus, G. Stephen Kocheril, Paul A. Jenkins II, and.
Near-Infrared Spectroscopy of H 3 + Above the Barrier to Linearity Jennifer L. Gottfried Department of Chemistry, The University of Chicago *Current address:
Fiber-laser-based NICE-OHMS
High-Resolution Visible Spectroscopy of H 3 + Christopher P. Morong, Christopher F. Neese and Takeshi Oka Department of Chemistry, Department of Astronomy.
High Precision, Sensitive, Near-IR Spectroscopy in a Fast Ion Beam Michael Porambo, Holger Kreckel, Andrew Mills, Manori Perera, Brian Siller, Benjamin.
PROGRESS & RESULTS IN THE DEVELOPMENTS OF THE SENSITIVE, COOLED, RESOLVED ION BEAM SPECTROMETER (SCRIBES) Andrew Mills, Brian Siller, Michael Porambo,
Brian Siller, Andrew Mills, Michael Porambo & Benjamin McCall Chemistry Department, University of Illinois at Urbana-Champaign.
Rotationally-Resolved Infrared Spectroscopy of the ν 16 Band of 1,3,5- Trioxane Bradley M. Gibson, Nicole C. Koeppen Department of Chemistry, University.
The Infrared Spectrum of CH 5 + Revisited Kyle N. Crabtree, James N. Hodges, and Benjamin J. McCall.
Precision Laser Spectroscopy of H 3 + Hsuan-Chen Chen 1, Jin-Long Peng 2, Takayoshi Amano 3,4, Jow-Tsong Shy 1,5 1 Institute of Photonics Technologies,
High Precision Mid-IR Spectroscopy of 12 C 16 O 2 [10 0 1,02 0 1] I ← Band Near 2.7 µm Jow-Tsong Shy Department of Physics, National Tsing Hua University,
High Precision Infrared Spectroscopy of OH + Charles R. Markus, Adam J. Perry, James N. Hodges, G. Stephen Kocheril, Paul A. Jenkins II, Benjamin J. McCall.
Frequency Comb Velocity-Modulation Spectroscopy of HfF + Kevin Cossel Laura Sinclair, Tyler Coffey, Jun Ye, and Eric Cornell OSU 2011 Acknowledgements:
The Influence of Free-Running FP- QCL Frequency Jitter on Cavity Ringdown Spectroscopy of C 60 Brian E. Brumfield* Jacob T. Stewart* Matt D. Escarra**
Cavity Ringdown Spectroscopy of Molecular Ions in a Fast Ion Beam Susanna L. Widicus Weaver, Andrew A. Mills, and Benjamin J. McCall Departments of Chemistry.
FTS Studies Of The Isotopologues Of CO 2 Toward Creating A Complete And Highly Accurate Reference Standard Ben Elliott, Keeyoon Sung, Charles Miller JPL,
OBSERVATION AND ANALYSIS OF THE A 1 -A 2 SPLITTING OF CH 3 D M. ABE*, H. Sera and H. SASADA Department of Physics, Faculty of Science and Technology, Keio.
Champaign, June 2015 Samir Kassi, Johannes Burkart Laboratoire Interdisciplinaire de Physique, Université Grenoble 1, UMR CNRS 5588, Grenoble F-38041,
Progress Towards a High-Precision Infrared Spectroscopic Survey of the H 3 + Ion Adam J. Perry, James N. Hodges, Charles Markus, G. Stephen Kocheril, Paul.
A. Nishiyama a, K. Nakashima b, A. Matsuba b, and M. Misono b a The University of Electro-Communications b Fukuoka University High Resolution Spectroscopy.
Frequency-comb referenced spectroscopy of v 4 =1 and v 5 =1 hot bands in the 1. 5 µm spectrum of C 2 H 2 Trevor Sears Greg Hall Talk WF08, ISMS 2015 Matt.
Sub-Doppler Jet-Cooled Infrared Spectroscopy of ND 2 H 2 + and ND 3 H + in NH Stretch Fundamental Modes Astronomical Molecular Spectroscopy in the Age.
Brian Siller, Michael Porambo & Benjamin McCall Chemistry Department University of Illinois at Urbana-Champaign.
INDIRECT TERAHERTZ SPECTROSCOPY OF MOLECULAR IONS USING HIGHLY ACCURATE AND PRECISE MID-IR SPECTROSCOPY Andrew A. Mills, Kyle B. Ford, Holger Kreckel,
Sub-Doppler Spectroscopy of H 3 + James N. Hodges, Adam J. Perry, Brian M. Siller, Benjamin J. McCall.
Development of a Fast Ion Beam Spectrometer for Molecular Ion Spectroscopy Departments of Chemistry and Astronomy University of Illinois at Urbana-Champaign.
Initial Development of High Precision, High Resolution Ion Beam Spectrometer in the Near- Infrared Michael Porambo, Brian Siller, Andrew Mills, Manori.
High Precision Spectroscopy of CH 5 + with NICE-OHVMS James N. Hodges, Adam J. Perry and Benjamin J. McCall.
Optical Frequency Comb Referenced Sub-Doppler Resolution Difference-Frequency-Generation Infrared Spectroscopy K. Iwakuni, S. Okubo, H. Nakayama, and H.
SCRIBES Sensitive Cooled Resolved Ion BEam Spectroscopy
The Performance Of A Continuous Supersonic Expansion Discharge Source
The Performance Of A Continuous Supersonic Expansion Discharge Source
Mid-IR Direct Absorption/Dispersion Spectroscopy of a Fast Ion Beam
Scott E. Dubowsky, Amber N. Rose, Nick Glumac, Benjamin J. McCall
Nuclear Spin Dependence of the Reaction of H3+ with H2
INFRARED SPECTROSCOPY OF DISILICON-CARBIDE, Si2C
Doppler-free two-photon absorption spectroscopy of vibronic excited states of naphthalene assisted by an optical frequency comb UNIV. of Electro-Communications.
The Near-IR Spectrum of CH3D
69th. International Symposium on Molecular Spectroscopy
High-Resolution Spectroscopy of the ν16 Band of 1,3,5-Trioxane
Nick Indriolo1, Thomas R. Geballe2, Takeshi Oka3, and Benjamin J
Indirect Rotational Spectroscopy of HCO+
Brian Siller, Andrew Mills, Michael Porambo & Benjamin McCall
High resolution rovibrational spectroscopy of large molecules using infrared frequency combs and buffer gas cooling Bryan Changala1, Ben Spaun1, David.
High-resolution Laser Spectroscopy
Single molecule spectroscopy: towards precision measurements on CaH+
Fourier Transform Infrared Spectral
Progress In The Development Of An Infrared Ion Beam Spectrometer
Spectroscopy of Carbocations and C60
Presentation transcript:

Charles R. Markus, Adam J. Perry, James N. Hodges, Benjamin J. McCall Improved Spectroscopy of Molecular Ions in the Mid-Infrared with Up-Conversion Detection Charles R. Markus, Adam J. Perry, James N. Hodges, Benjamin J. McCall 71st International Symposium on Molecular Spectroscopy University of Illinois at Urbana-Champaign 21 June, 2016 TC07

Overview NICE-OHVMS technique Removing parasitic etalons Description Limitations Removing parasitic etalons Mechanism of detection Brewster-Spoiler plate Up-conversion detection Design Results Future directions

Molecular Ions H Over 190 molecules identified in the interstellar medium (ISM) Reactions must overcome cold and diffuse environment Ion-neutral reactions dominate chemistry of ISM Aleman, et al., A&A,2014, 566, A79. www.nasa.gov/mission_pages/hubble 𝜇m 𝜇m

Molecular Ions H Many of the simplest molecules are molecular ions Accurate ab initio calculations must go beyond Born-Oppenheimer approximation Laboratory spectra act as benchmarks for state-of-the-art methods H He H

Ion Spectroscopy Ion are orders of magnitude less abundant than neutral species

NICE-OHVMS Noise Immune Cavity Enhanced Optical Heterodyne Velocity Modulation Spectroscopy

Increased Signal and Precision NICE-OHVMS Noise Immune Cavity Enhanced Optical Heterodyne Velocity Modulation Spectroscopy Increased Signal and Precision K. N. Crabtree, et al., Chem. Phys. Lett., 2012, 551, 1-6.

Increased Signal and Precision NICE-OHVMS Noise Immune Cavity Enhanced Optical Heterodyne Velocity Modulation Spectroscopy Increased Signal and Precision Improved Sensitivity K. N. Crabtree, et al., Chem. Phys. Lett., 2012, 551, 1-6.

Increased Signal and Precision Ion-Neutral Discrimination NICE-OHVMS Noise Immune Cavity Enhanced Optical Heterodyne Velocity Modulation Spectroscopy Increased Signal and Precision Ion-Neutral Discrimination Improved Sensitivity K. N. Crabtree, et al., Chem. Phys. Lett., 2012, 551, 1-6.

Velocity Modulation Velocity C. S. Gudeman, et al., J. Chem. Phys., 1983, 78, 5873.

- - + + Velocity Modulation Velocity Lock-in Amplifier C. S. Gudeman, et al., J. Chem. Phys., 1983, 78, 5873.

- - + + Velocity Modulation Velocity Lock-in Amplifier B. M. Siller, et al., Opt. Lett., 2010, 35, 1266.

- - + + Velocity Modulation 𝜈 Lock-in Amplifier Lock-in Amplifier Referenced at 2×𝑓 𝜈 B. M. Siller, et al., Opt. Lett., 2010, 35, 1266

Cavity Enhancement Signal increase of 2F/𝜋 FSR =𝑐/2𝑛𝑙 𝐼 𝑡𝑟𝑎𝑛𝑠 𝜈

Heterodyne Detection

NICE-OHMS 𝐼 𝑡𝑟𝑎𝑛𝑠 𝜈 Fheterodyne = n×FSR J.Ye, et al., J. Opt. Soc. Am. B, 1998, 15, 6.

Saturation Spectroscopy 𝜈− 𝜈 𝑟𝑒𝑠𝑡 (MHz) Velocity (m/s)

Saturation Spectroscopy 𝜈− 𝜈 𝑟𝑒𝑠𝑡 (MHz) Velocity (m/s)

Saturation Spectroscopy 𝜈− 𝜈 𝑟𝑒𝑠𝑡 (MHz) Velocity (m/s)

Saturation Spectroscopy 𝜈− 𝜈 𝑟𝑒𝑠𝑡 (MHz) Velocity (m/s)

Saturation Spectroscopy 𝜈− 𝜈 𝑟𝑒𝑠𝑡 (MHz) Velocity (m/s)

Saturation Spectroscopy 𝜈− 𝜈 𝑟𝑒𝑠𝑡 (MHz) Velocity (m/s)

NICE-OHVMS Spectrometer Frequency Calibration 40 kHz to PZT OPO PZT nidler = npump - nsignal ~3 MHz EOM Lock-In Amplifier Lock-In Amplifier ν 2xf = 80 kHz 80 MHz YDFL X & Y Channels X & Y Channels 90o Phase Shift Fast Lock Box Slow B. M. Siller, et al., Opt. Express,2011, 19, 24822-7.

NICE-OHVMS Results H3+ R(1,0), 2725.898 cm-1 80 MHz Mixer 1 Mixer 2 2×40 kHz Lock-in 1 Lock-in 2 0o 90o Mixer 1 Output Mixer 2 Output H3+ R(1,0), 2725.898 cm-1

Parasitic Etalons 𝜈 𝐼 𝜈 𝐼 𝜈 𝐼 FSR = 𝑐 2𝒏𝑙 𝑛 𝑡 =𝛼×sin⁡(2 𝜔 𝑣𝑚𝑠 𝑡)

Spoiling Parasitic Etalons 𝜈 𝐼

Spoiling Parasitic Etalons 𝜈 𝐼 C. Webster, et al., J. Opt. Soc. Am., 1985, 2, 1464.

Spoiling Parasitic Etalons Mixer 1 Output H3+ R(1,0), 2725.898 cm-1 Mixer 2 Output Galvo S/N (best channel) Off 25 On 763 Galvo S/N (best channel) Off 25

Heterodyne Detection 𝑓 𝐻𝑒𝑡 = 20% FWHM Overlapping sub-Doppler features Optimized signal Resolved Lamb dips Improved fits Improved Δ𝜆

Difference Frequency Generation 𝜂 𝐷𝐹𝐺 = 0.5% /W532 APD V10 Vigo PVM-10.6 Menlo APD 220 Δ𝜈 150 (MHz) 1000 MHz NEP 4800 (pW/Hz1/2) 0.4 (pW/Hz1/2) Vigo PVM-10.6 Δ𝜈 150 (MHz) NEP 4800 (pW/Hz1/2) Vigo PVM-10.6 Menlo APD 220 Δ𝜈 150 (MHz) 1000 MHz NEP 4800 (pW/Hz1/2) 0.4 (pW/Hz1/2) NEP/( 𝜂 𝐷𝐹𝐺 × 𝑃 𝑝𝑢𝑚𝑝 ) 10 (pW/Hz1/2)

Up-conversion Results H3+ R(1,0), 2725.898 cm-1 Mixer 1 Output Mixer 2 Output Detection Method S/N (Best Channel) 78 MHz mid-IR 337 78 MHz up-conversion 2029 390 MHz up-conversion 1211 Detection Method S/N (Best Channel) 78 MHz mid-IR 337 Detection Method S/N (Best Channel) 78 MHz mid-IR 337 78 MHz up-conversion 2029

Up-conversion Results 4.2× 10 −9 cm-1 3.5× 10 −10 cm-1 Detection Method 78 MHz mid-IR 78 MHz up-conversion 390 MHz up-conversion 1.6× 10 −10 cm-1

Future Directions H Apply up-conversion to survey of H3+ Measure fundamental band (3 – 4.5 𝜇m) Hotband transitions Extend to measure overtone transitions (1.9 – 2.1 𝜇m) Observe resolved Lamb dips Increase intracavity power Lock sidebands using DeVoe-Brewer locking H ν (c m −1 )

Conclusions Removed parasitic etalons in NICE-OHVMS experiment with Brewster-spoiler plate Improved sensitivity by an order of magnitude with DFG up-conversion of mid-IR beam

Acknowledgments Advisor: Ben McCall Special thanks to: James Hodges Adam Perry G. Stephen Kocheril