Microwave spectra of 1- and 2-bromobutane

Slides:



Advertisements
Similar presentations
The Delicate Balance of Hydrogen Bond Forces in D-Threoninol 19 Di Zhang, Vanesa Vaquero Vara, Brian C. Dian and Timothy S. Zwier Zwier Research Group,
Advertisements

Fourier transform microwave spectrum of isobutyl mercaptan Kanagawa Institute of Technology 1 and The Graduate University for Advanced Studies 2 Yugo Tanaka,
CHIRPED-PULSE FOURIER-TRANSFORM MICROWAVE SPECTROSCOPY OF THE PROTOTYPICAL C-H…π INTERACTION: THE BENZENE…ACETYLENE WEAKLY BOUND DIMER Nathan W. Ulrich,
High Resolution Laser Induced Fluorescence Spectroscopic Study of RuF Timothy C. Steimle, Wilton L. Virgo Tongmei Ma The 60 th International Symposium.
Anh T. Le and Timothy C. Steimle* The molecular frame electric dipole moment and hyperfine interaction in hafnium fluoride, HfF. Department of Chemistry.
Galen Sedo, Jamie L. Doran, Shenghai Wu, Kenneth R. Leopold Department of Chemistry, University of Minnesota A Microwave Determination of the Barrier to.
Rotational Spectra of Methylene Cyclobutane and Argon-Methylene Cyclobutane Wei Lin, Jovan Gayle Wallace Pringle, Stewart E. Novick Department of Chemistry.
Determination of succinic acid structure in the gas phase by cm/mm spectroscopy Estíbaliz Méndez Alija University of The Basque Country, UPV/EHU, Spain.
The Study of Noble Gas – Noble Metal Halide Interactions: Fourier Transform Microwave Spectroscopy of XeCuCl Julie M. Michaud and Michael C. L. Gerry University.
1 Broadband Chirped-Pulse Fourier- Transform Microwave (CP-FTMW) Spectroscopic Investigation of the Structures of Three Diethylsilane Conformers Amanda.
Observation of the weakly bound (HCl) 2 H 2 O cluster by chirped-pulse FTMW spectroscopy Zbigniew Kisiel, a Alberto Lesarri, b Justin Neill, c Matt Muckle,
Gas Phase Conformational Distributions
Microwave Spectra and Structures of H 2 S-CuCl and H 2 O-CuCl Nicholas R. Walker, Felicity J. Roberts, Susanna L. Stephens, David Wheatley, Anthony C.
THE PURE ROTATIONAL SPECTRA OF THE TWO LOWEST ENERGY CONFORMERS OF n-BUTYL ETHYL ETHER. B. E. Long, G. S. Grubbs II, and S. A. Cooke RH13.
Physique des Lasers, Atomes et Molécules
Chirped-pulse, FTMW spectroscopy of the lactic acid-H 2 O system Zbigniew Kisiel, a Ewa Białkowska-Jaworska, a Daniel P. Zaleski, b Justin L. Neill, b.
Rotational Spectra and Structure of Phenylacetylene-Water Complex and Phenylacetylene-H 2 S (preliminary) Mausumi Goswami, L. Narasimhan, S. T. Manju and.
†) Currently at Department of Chemistry, University of Manitoba A Microwave Study of the HNO 3 -N(CH 3 ) 3 Complex Galen Sedo, † Kenneth R. Leopold Department.
The Pure Rotational Spectrum of Pivaloyl Chloride, (CH 3 ) 3 CCOCl, between 800 and MHz. Garry S. Grubbs II, Christopher T. Dewberry, Kerry C. Etchison,
Equilibrium Molecular Structure and Spectroscopic Parameters of Methyl Carbamate J. Demaison, A. G. Császár, V. Szalay, I. Kleiner, H. Møllendal.
Fourier transform microwave spectra of CO–dimethyl sulfide and CO–ethylene sulfide Akinori Sato, Yoshiyuki Kawashima and Eizi Hirota * The Graduate University.
THE MICROWAVE STUDIES OF GUAIACOL (2-METHOXYPHENOL), ITS ISOTOPOLOGUES & VAN DER WAALS COMPLEXES Ranil M. Gurusinghe, Ashley Fox and Michael J. Tubergen,
Effective C 2v Symmetry in the Dimethyl Ether–Acetylene Dimer Sean A. Peebles, Josh J. Newby, Michal M. Serafin, and Rebecca A. Peebles Department of Chemistry,
Perfluorobutyric acid and its monohydrate: a chirped pulse and cavity based Fourier transform microwave spectroscopic study Javix Thomas a, Agapito Serrato.
Rotational Spectra Of Cyclopropylmethyl Germane And Cyclopropylmethyl Silane: Dipole Moment And Barrier To Methyl Group Rotation Rebecca A. Peebles, Sean.
0 ipc kiel The rotational spectrum of the pyrrole-ammonia complex Heinrich Mäder, Christian Rensing and Friedrich Temps Institut für Physikalische Chemie.
Intermolecular Interactions between Formaldehyde and Dimethyl Ether and between Formaldehyde and Dimethyl Sulfide in the Complex, Investigated by Fourier.
Rotational Spectroscopic Investigations Of CH 4 ---H 2 S Complex Aiswarya Lakshmi P. and E. Arunan Inorganic and Physical Chemistry Indian Institute of.
Broadband Microwave Spectroscopy to Study the Structure of Odorant Molecules and of Complexes in the Gas Phase Sabrina Zinn, Chris Medcraft, Thomas Betz,
The Rotational Spectrum of the Water–Hydroperoxy Radical (H 2 O–HO 2 ) Complex Kohsuke Suma, Yoshihiro Sumiyoshi, and Yasuki Endo Department of Basic Science,
Fourier-transform microwave spectroscopy of the CCCCl radical Takashi Yoshikawa, Yoshihiro Sumiyoshi, and Yasuki Endo Graduate School of Arts and Sciences,
Rotational spectra of C2D4-H2S, C2D4-D2S, C2D4-HDS and 13CH2CH2-H2S complexes: Molecular symmetry group analysis Mausumi Goswami and E. Arunan Inorganic.
72nd International Symposium on Molecular Spectroscopy, 6/20/2017
The microwave spectroscopy study of 1,2-dimethoxyethane
Rotational Spectroscopy of the Lowest Energy Conformer of 2-Cyanobutane and Search for it in Sagittarius B2(N2) H. S. P. Müller, N. Wehres, O. Zingsheim,
Rebecca A. Peebles,a Prashansa B. Kannangara,a Brooks H
ROTATIONAL SPECTROSCOPY OF THE METHYL GLYCIDATE-WATER COMPLEX
Department of Chemistry
72nd International Symposium on Molecular Spectroscopy (ISMS 2017)
Mark D. Marshall, Helen O. Leung, Craig J. Nelson & Leonard H. Yoon
STEPHEN G. KUKOLICH, MING SUN, ADAM M. DALY University of Arizona
Stéphane Bailleux University of Lille
Characterisation and Control of Cold Chiral Compounds
1Kanagawa Institute of Technology 3Georgia Southern University
Carlos Cabezas and Yasuki Endo
Optical Stark Spectroscopy and Hyperfine study of Gold Sulfide (AuS)
MICROWAVE SPECTROSCOPY OF 2-PENTANONE
The CP-FTMW Spectrum of Bromoperfluoroacetone
Aimee Bell, Omar Mahassneh, James Singer,
Chirped pulse rotational spectroscopy
M. Rezaei, J. George, L. Welbanks, and N. Moazzen-Ahmadi
Rotational Spectra of Adducts of Pyridine with Methane and Its Halides
The Effect of Protic Acid Identity on the Structures of Complexes with Vinyl Chloride: Fourier Transform Microwave Spectroscopy and Molecular Structure.
CHIRPED-PULSE FOURIER TRANSFORM MICROWAVE SPECTROSCOPY OF
Optical Stark Spectroscopy and Hyperfine study of Gold Sulfide (AuS)
Mahdi Kamaee and Jennifer van Wijngaarden
The Rotational Spectrum of cis- and trans-HSSOH
Methylstyrenes – Microwave Spectroscopy
THE STRUCTURE OF PHENYLGLYCINOL
Fourier transform microwave spectra of n-butanol and isobutanol
Stéphane Bailleux Nitrosyl iodide, INO: millimeter-wave spectroscopy guided by ab initio quantum chemical computation.
Ashley M. Anderton, Cori L. Christenholz, Rachel E. Dorris, Rebecca A
Fourier Transform Infrared Spectral
The Conformational Landscape of Serinol
Methylindoles – Microwave Spectroscopy
BROADBAND MICROWAVE SPECTROSCOPY AS A TOOL TO STUDY DISPERSION INTERACTIONS IN CAMPHOR-ALCOHOL SYSTEMS MARIYAM FATIMA, CRISTÓBAL PÉREZ, MELANIE SCHNELL,
Michal M. Serafin, Sean A. Peebles
Daniel A. Obenchain, Derek S. Frank, Stewart E. Novick,
THE MICROWAVE SPECTRUM AND UNEXPECTED STRUCTURE OF THE BIMOLECULAR COMPLEX FORMED BETWEEN ACETYLENE AND (Z)-1-CHLORO-2-FLUOROETHYLENE Nazir D. Khan, Helen.
COMPREHENSIVE ANALYSIS OF INTERSTELLAR
Presentation transcript:

Microwave spectra of 1- and 2-bromobutane Soohyun Ka, Jihyun Kim, Heesu Jang and Jung Jin Oh Research Institute of Global Environment Sookmyung Women’s University, Korea 22 June 2015

Abstract The rotational spectrum of 1-bromobutane measured by the 480 MHz bandwidth chirped-pulse Fourier transform microwave (CP-FTMW) spectrometer at the Eastern Illinois University. In this paper, the ab initio calculation and the analysis of rotational spectrum were performed, and the properties of gas molecule are reported. 1-bromobutane have five conformers; aa, ag, ga, gg, gg’. The transitions were assigned to three different conformers which are most stable forms; aa, ag, ga. The spectra for the normal isotopic species and 81Br substitution were observed and assigned. The rotational spectrum of 2-bromobutane has been observed in the frequency region 7-18 GHz. 2-bromobutane has the three possible conformers; G+, A, G-. The difference of their energy is very small, so the spectra of all conformers were found in the full range of our spectrum. Consequentially, the rotational constants, nuclear quadrupole constants, and centrifugal distortion constants were determined and the dipole moment of the aa conformer with 79Br were measured. International Symposium on Molecular Spectroscopy

Previous Study [1-BrBu] F. A. Momany, R. A. Bonham, and W. H. McCoy, Electron diffraction determination of the molecular structure of the butyl halides. IV. The structure and conformational analysis of n-butyl bromide in the gas phase, J. Am. Chem. Soc., 85, 3077-3080 (1963) [1-ClBu] E. M. Belloot, JR. and E. Bright Wilson, Free energy of Conformational Changes in Vapors from Low Resolution Microwave Spectroscopic Intensities, J. Mol. Spec., 66, 41-45 (1977) [1-XBu] W. E. Steinmetz, F. Hickernell, and I. K. Mun, The conformational analysis of 1-Haloalkanes by low resolution microwave spectroscopy, J. Mol. Spec., 68, 173-182 (1977) [1-BrBu] K. Aarset, K. Hagen, R. Stølevik, and P. C. Sæbø, Molecular structure and conformational composition of 1-chlorobutane, 1-bromobutane, and 1-iodobutane as determined by gas-phase electron diffraction and ab initio calculations, Struct. Chem., 6(3), 197-205 (1995) [2-BrBu] K. Aarset, K. Hagen, and R. Stølevik, Molecular structures and conformational compositions of 2-chlorobutane and 2-bromobutane; an investigation using gas-phase electron diffraction data and ab initio molecular orbital calculations, J. Mol. Struct., 567-568, 157-165 (2001) [1-BrBu] O. Takahashi, K. Yamasaki, Y. Kohno, K. Ueda, H. Suezawa, and M. Nishio, Origin of the gauche preference of n-propyl halides and related molecules investigated by ab initio MO calculations: Importance of the CH/n hydrogen bond, Chem. Phys. Lett., 440, 64-49 (2007) International Symposium on Molecular Spectroscopy

::: 1-bromobutane ::: Possible conformers aa ag ga gg’ gg International Symposium on Molecular Spectroscopy

::: 1-bromobutane ::: Summary of Previous Study This Study Con-former B+C (MHz) Ratio (%) ΔG (kJ/mol) ΔE aa 1799.8(0.9) 36 22.9 1798.7973 1799.9456 0.079 ga 2307(24) 24 37.7 0.5 1.3 2.9 2314.9399 2321.3071 0.096 ag 1994.8(1.2) 21.3 1.93 4.2 - 2004.3014 2.561 gg 16 17.7 2.39 4.6 3.8 2816.7008 2893.6109 gg’ 0.42 11.68 14.0 2979.0515 10.599 Method LRMW (b) ED at RT (a) MP2/ 6-311G(d,p) (d) HF/ 6-31G* (c) ED at 18℃ FTMW 6-311+G (2d,2p) F. A. Momany et al., J. Am. Chem. Soc., 85, 3077-3080 (1963) W. E. Steinmetz et al., J. Mol. Spec., 68, 173-182 (1977) (c) K. Aarset et al., Struct. Chem., 6(3), 197-205 (1995) O. Takahashi et al., Chem. Phys. Lett., 440, 64-49 (2007) International Symposium on Molecular Spectroscopy

::: 1-bromobutane ::: Hyperfine Transitions + - Nuclear quadrupole moments ΔF = +1 ΔF = 0 ΔF = -1 J=5 J=6 F=15/2 F=13/2 F=11/2 F= 9/2 F= 7/2 F=15/2 F=13/2 F=11/2 F= 9/2 F= 7/2 F=15/2 F=13/2 F=11/2 F= 9/2 F= 7/2 ΔJ=+1 2I+1 components  4 transitions Very strong intensity 2I components  3 transitions 2I-1 components  2 transitions Very weak intensity International Symposium on Molecular Spectroscopy

::: 1-bromobutane ::: Hyperfine Splitting F→F F→F-1 ΔF = +1 F=15/2 F=13/2 F=11/2 F= 9/2 F= 7/2 F=15/2 F=13/2 F=11/2 F= 9/2 F= 7/2 J=5 J=6 F=15/2 F=13/2 F=11/2 F= 9/2 F= 7/2 4.7 MHz F→F 2I components  3 F→F-1 2I-1 components  2 Very weak intensity 2I+1 components  4 possibilities Very strong intensity International Symposium on Molecular Spectroscopy

::: 1-bromobutane ::: Spectrum assignment Br isotopic ratio 81Br: 49.463% 79Br: 50.537% (a) ga conformer (b) aa conformer (c) gg conformer 79Br 81Br (d) Experimental (7.5 ~ 18 GHz) by JB95 (a) ga conformer μa=1.621 D, μb=1.257 D, μc=0.216 D a-type & b-type transition assigned (b) aa conformer μa=2.179 D, μb=0.744 D, μc=0.000 D only a-type transition assigned (c) gg conformer μa=1.705 D, μb=1.041 D, μc=0.478 D only a-type transition assigned International Symposium on Molecular Spectroscopy

::: 1-bromobutane ::: Rotational constants calc: ab initio at MP2/6-311+G(2d,2p) ga aa gg 79Br 81Br A (MHz, calc) 8271.3308 16054.1124 6126.6379 B (MHz, calc) 1210.3063 915.1317 1508.2537 C (MHz, calc) 1111.0008 884.6139 1385.3572 A (MHz) 8196.3730(7) 8183.7297(6) 15770.66(9) 15760.27(1) 6240.618(2) 6235.48(8) B (MHz) 1207.26281(1) 1197.95218(9) 914.89072(6) 907.47581(6) 1463.8266(4) 1452.1707(4) C (MHz) 1107.67707(8) 1099.61264(8) 883.90660(7) 876.95290(6) 1352.8742(4) 1342.6930(4) DJ (kHz) 0.3171(8) 0.3116(6) 0.0634(3) 0.05829(3) 1.5084(3) 1.4786(2) DJK (kHz) -5.639(1) -5.675(9) -3.091(1) -3.004(9) -12.775(2) -13.00(1) d1 (kHz) 0.0511(5) 0.0442(5) 0.278(4) 0.281(3) χaa (MHz) 87.165(9) 73.833(9) 363.04(3) 303.67(3) 157.831(1) 132.69(2) χbb-χcc (MHz) 420.2412(6) 350.2016(6) 184.904(1) 153.212(1) 141.976(5) 117.952(7) χab (MHz) 394.70(4) 329.92(4) -337.810(1) -282.005(2) -336.105(3) -280.1(4) χac (MHz) -72.26(2) -59.81(2) 221.615(3) 186.5(6) χbc (MHz) -87.377(2) -74.04(1) -172.68(8) -144.24(7) N 99(26) 105(28) 86(23) 98(26) 47(14) 35(9) Δνrms (kHz) 3.58 5.12 6.08 5.10 3.90 5.71 κ (Kappa) -0.972 -0.996 -0.955 International Symposium on Molecular Spectroscopy

::: 1-bromobutane ::: Dipole moments of aa conformer Observed (point) and calculated (continuous lines) frequency shifts for some of the observed ΔMF=0 Stark components in CH3CH2CH2CH279Br aa conformer As the aa conformer has symmetry plane, it is expected the aa conformer would possess non-zero μa and μb dipole moment components. aaobs aacalc Δobs-calc μa (D) 2.229(13) 2.179 0.050 μb (D) 0.603(60) 0.744 -0.141 μc (D) 0.000 μtot (D) 2.309 2.303 0.006 N 49 International Symposium on Molecular Spectroscopy

::: 2-bromobutane ::: Structure & ab initio calculation G+ A G- ΔE (kJ/mol) MP2/6-311+G(2d,2p) 0.00 2.08 2.67 Dihedral angle Calculated angle G+ +60° +63.80° A 180° 174.57° G- -60° -67.03° 2-bromobutane ab initio calculation result with MP2/6-311+G(2d,2p) Previous study This study Conformer ΔE (kJ/mol) G+ 0.00 A 1.77 2.08 G- 3.52 2.67 Method HF/6-311+G(d,p) -(a) MP2/6-311+G(2d,2p) (a) K. Aarset, et al., J. Mol. Struct., 567-568, 157-165 (2001) International Symposium on Molecular Spectroscopy

::: 2-bromobutane ::: Spectrum assignment Br isotopic ratio 81Br: 49.463% 79Br: 50.537% (a) G+ conformer (b) A conformer (c) G- conformer (d) Experimental (7.5 ~ 18 GHz) (a) G+ conformer μa=1.910 D μb=1.010 D μc=0.280 D a-type & b-type transition assigned (b) A conformer μa=2.250 D μb=0.440 D μc=0.260 D only a-type transition assigned (c) G- conformer μa=2.010 D μb=0.780 D μc=0.520 D only a-type transition assigned International Symposium on Molecular Spectroscopy

::: 2-bromobutane ::: Rotational constants calc: ab initio at MP2/6-311+G(2d,2p) G+ A G- 79Br 81Br A (MHz, calc) 3882.291333 6534.080423 4595.988187 B (MHz, calc) 2277.22846 1553.409642 1993.058953 C (MHz, calc) 1526.229396 1319.320593 1630.532496 A (MHz) 3857.83420(2) 3853.30685(2) 6412.915(3) 6409.136(2) 4532.801(1) 4530.476(1) B (MHz) 2272.32632(2) 2253.63508(2) 1555.2157(4) 1542.28983(3) 1998.3289(1) 1981.7974(9) C (MHz) 1520.60969(1) 1511.52569(1) 1316.55295(3) 1307.12676(3) 1626.3843(6) 1615.1494(6) ΔJ (kHz) 0.709(4) 0.697(4) 0.1470(3) 0.1576(1) 0.683(1) 0.640(9) ΔJK (kHz) -1.369(1) -1.301(1) 0.47(3) 0.54(3) -1.76(7) -1.68(6) δ1 (kHz) 0.2654(3) 0.2517(3) 0.027(3) 0.0244(2) 0.207(1) 0.197(9) χaa (MHz) 300.1367(2) 253.8573(2) 446.043(9) 372.949(9) 317.134(1) 266.182(1) χbb-χcc (MHz) 135.6128(3) 110.2848(3) 7.632(3) 5.884(3) 62.884(3) 51.616(3) χab (MHz) 321.18(6) 266.64(9) 179.19(4) 149.08(5) -274.8(6) -230.8(7) χac (MHz) -140.93(2) -117.00(2) 145.47(9) 121.79(8) 200.6(9) 165.2(1) χbc (MHz) -82.16(1) -68.25(2) 36.62(3) 33.1(3) -96.21(9) -78.70(2) N 135(25) 127(25) 59(15) 66(17) 35(9) 43(11) Δνrms (kHz) 5.97 6.05 3.99 5.17 3.53 5.33 κ (Kappa) -0.357 -0.366 -0.906 -0.908 -0.744 -0.748 International Symposium on Molecular Spectroscopy

::: 2-bromobutane ::: Hyperfine splitting of G+ isomer G+ conformer Stable, strong intensity F → F+1, F → F component observed & assigned G+ 79Br G+ 81Br Experimental spectrum 404-303 G+ 79Br G+ 81Br 5/2-5/2 13569.05095 -0.01 13503.34265 7/2-7/2 13615.85930 13542.54050 11/2-9/2 13641.61370 0.01 13564.32606 0.00 9/2-7/2 13645.14445 13567.15612 5/2-3/2 13649.35960 13570.93795 7/2-5/2 13652.98260 13573.83347 9/2-9/2 13726.48555 13635.47560 ΔF = 0 ΔF = 0 (Δν = 150 MHz) ΔF = +1 (Δν = 10 MHz) ΔF = 0 International Symposium on Molecular Spectroscopy

::: 2-bromobutane ::: Dipole moments of G+ conformer Observed (point) and calculated (continuous lines) frequency shifts for some of the observed ΔMF=0 Stark components in CH3CH79BrCH2CH3 G+ conformer N is the number of distinct Stark measurement G+obs G+calc Δobs-calc μa (D) 1.771(16) 1.910 -0.139 μb (D) 1.180(29) 1.010 0.170 μc (D) 0.412(17) 0.280 0.132 μtot (D) 2.168 2.180 -0.012 N 52 International Symposium on Molecular Spectroscopy

CONCLUSION The ab initio calculation and the measurement of the rotational spectra of 1- and 2-bromobutane were performed. From the rotational spectrum analysis, the most stable conformer is determined to be the ga conformer for the 1-bromobutane in this study. Our experimental results are consistent with one of the previous studies that the gauche conformer is most stable. The reason is that the distances between the bromine and the closest hydrogen in the ga, gg and gg’ conformer (2.92~2.94 Å) are remarkably shorter than van der waals distance (3.05 Å). For the 2-bromobutane, the G+ isomer is the most stable and it is consistent with ab initio calculation. The measured dipole moments of 1- and 2-bromobutane show good agreement with the ab initio calculation. International Symposium on Molecular Spectroscopy

Acknowledgement Dr. Prof. Sean A. Peebles in Eastern Illinois University Dr. Prof. Rebecca A. Peebles in Eastern Illinois University This research was supported by Basic Science Research Program funded by the Ministry of Science, ICT and future Planning. Photos from Dr. Prof. Sean A. Peebles Lab in EIU http://www.ux1.eiu.edu/~cfsap/ International Symposium on Molecular Spectroscopy