A Scalable content-addressable network

Slides:



Advertisements
Similar presentations
Topology-Aware Overlay Construction and Server Selection Sylvia Ratnasamy Mark Handley Richard Karp Scott Shenker Infocom 2002.
Advertisements

CAN 1.Distributed Hash Tables a)DHT recap b)Uses c)Example – CAN.
Peer to Peer and Distributed Hash Tables
Scalable Content-Addressable Network Lintao Liu
Peer-to-Peer Systems Chapter 25. What is Peer-to-Peer (P2P)? Napster? Gnutella? Most people think of P2P as music sharing.
Massively Distributed Database Systems Distributed Hash Spring 2014 Ki-Joune Li Pusan National University.
Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, Scott Schenker Presented by Greg Nims.
Presented by Elisavet Kozyri. A distributed application architecture that partitions tasks or work loads between peers Main actions: Find the owner of.
A Scalable Content Addressable Network (CAN)
Peer to Peer File Sharing Huseyin Ozgur TAN. What is Peer-to-Peer?  Every node is designed to(but may not by user choice) provide some service that helps.
Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, Scott Shenker A Scalable, Content- Addressable Network (CAN) ACIRI U.C.Berkeley Tahoe Networks.
A Scalable Content Addressable Network Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott Shenker Presented by: Ilya Mirsky, Alex.
CSc 461/561 CSc 461/561 Peer-to-Peer Streaming. CSc 461/561 Summary (1) Service Models (2) P2P challenges (3) Service Discovery (4) P2P Streaming (5)
Fault-tolerant Routing in Peer-to-Peer Systems James Aspnes Zoë Diamadi Gauri Shah Yale University PODC 2002.
A Scalable Content-Addressable Network Authors: S. Ratnasamy, P. Francis, M. Handley, R. Karp, S. Shenker University of California, Berkeley Presenter:
Distributed Lookup Systems
Overlay Networks EECS 122: Lecture 18 Department of Electrical Engineering and Computer Sciences University of California Berkeley.
A Scalable Content- Addressable Network Sections: 3.1 and 3.2 Καραγιάννης Αναστάσιος Α.Μ. 74.
Object Naming & Content based Object Search 2/3/2003.
Content Addressable Networks. CAN Associate with each node and item a unique id in a d-dimensional space Goals –Scales to hundreds of thousands of nodes.
1 CS 194: Distributed Systems Distributed Hash Tables Scott Shenker and Ion Stoica Computer Science Division Department of Electrical Engineering and Computer.
CS 268: Overlay Networks: Distributed Hash Tables Kevin Lai May 1, 2001.
ICDE A Peer-to-peer Framework for Caching Range Queries Ozgur D. Sahin Abhishek Gupta Divyakant Agrawal Amr El Abbadi Department of Computer Science.
Peer-to-peer file-sharing over mobile ad hoc networks Gang Ding and Bharat Bhargava Department of Computer Sciences Purdue University Pervasive Computing.
1CS 6401 Peer-to-Peer Networks Outline Overview Gnutella Structured Overlays BitTorrent.
Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, Scott Shenker A Scalable, Content- Addressable Network ACIRI U.C.Berkeley Tahoe Networks 1.
Structured P2P Network Group14: Qiwei Zhang; Shi Yan; Dawei Ouyang; Boyu Sun.
INTRODUCTION TO PEER TO PEER NETWORKS Z.M. Joseph CSE 6392 – DB Exploration Spring 2006 CSE, UT Arlington.
1 A scalable Content- Addressable Network Sylvia Rathnasamy, Paul Francis, Mark Handley, Richard Karp, Scott Shenker Pirammanayagam Manickavasagam.
Roger ZimmermannCOMPSAC 2004, September 30 Spatial Data Query Support in Peer-to-Peer Systems Roger Zimmermann, Wei-Shinn Ku, and Haojun Wang Computer.
A Survey of Peer-to-Peer Content Distribution Technologies Stephanos Androutsellis-Theotokis and Diomidis Spinellis ACM Computing Surveys, December 2004.
CONTENT ADDRESSABLE NETWORK Sylvia Ratsanamy, Mark Handley Paul Francis, Richard Karp Scott Shenker.
Content Overlays (Nick Feamster). 2 Content Overlays Distributed content storage and retrieval Two primary approaches: –Structured overlay –Unstructured.
Applied Research Laboratory David E. Taylor A Scalable Content-Addressable Network Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, Scott Shenker.
Sylvia Ratnasamy (UC Berkley Dissertation 2002) Paul Francis Mark Handley Richard Karp Scott Shenker A Scalable, Content Addressable Network Slides by.
Chord: A Scalable Peer-to-peer Lookup Protocol for Internet Applications Xiaozhou Li COS 461: Computer Networks (precept 04/06/12) Princeton University.
Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, Hari Balakrishnan MIT and Berkeley presented by Daniel Figueiredo Chord: A Scalable Peer-to-peer.
Content Addressable Network CAN. The CAN is essentially a distributed Internet-scale hash table that maps file names to their location in the network.
1 Slides from Richard Yang with minor modification Peer-to-Peer Systems: DHT and Swarming.
A Scalable Content-Addressable Network (CAN) Seminar “Peer-to-peer Information Systems” Speaker Vladimir Eske Advisor Dr. Ralf Schenkel November 2003.
Content Addressable Networks CAN is a distributed infrastructure, that provides hash table-like functionality on Internet-like scales. Keys hashed into.
1 Peer-to-Peer Technologies Seminar by: Kunal Goswami (05IT6006) School of Information Technology Guided by: Prof. C.R.Mandal, School of Information Technology.
Scalable Content- Addressable Networks Prepared by Kuhan Paramsothy March 5, 2007.
Peer to Peer A Survey and comparison of peer-to-peer overlay network schemes And so on… Chulhyun Park
P2P Group Meeting (ICS/FORTH) Monday, 28 March, 2005 A Scalable Content-Addressable Network Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp,
1 Distributed Hash Table CS780-3 Lecture Notes In courtesy of Heng Yin.
Peer to Peer Network Design Discovery and Routing algorithms
Algorithms and Techniques in Structured Scalable Peer-to-Peer Networks
LOOKING UP DATA IN P2P SYSTEMS Hari Balakrishnan M. Frans Kaashoek David Karger Robert Morris Ion Stoica MIT LCS.
Two Peer-to-Peer Networking Approaches Ken Calvert Net Seminar, 23 October 2001 Note: Many slides “borrowed” from S. Ratnasamy’s Qualifying Exam talk.
1 Distributed Hash Tables and Structured P2P Systems Ningfang Mi September 27, 2004.
P2P Search COP6731 Advanced Database Systems. P2P Computing  Powerful personal computer Share computing resources P2P Computing  Advantages: Shared.
P2P Search COP P2P Search Techniques Centralized P2P systems  e.g. Napster, Decentralized & unstructured P2P systems  e.g. Gnutella.
CSCI 599: Beyond Web Browsers Professor Shahram Ghandeharizadeh Computer Science Department Los Angeles, CA
A Survey of Peer-to-Peer Content Distribution Technologies Stephanos Androutsellis-Theotokis and Diomidis Spinellis ACM Computing Surveys, December 2004.
Early Measurements of a Cluster-based Architecture for P2P Systems
EE 122: Peer-to-Peer (P2P) Networks
CS 268: Peer-to-Peer Networks and Distributed Hash Tables
Dewan Tanvir Ahmed and Shervin Shirmohammadi
CONTENT ADDRESSABLE NETWORK
A Scalable, Content-Addressable Network
CS 162: P2P Networks Computer Science Division
The University of Adelaide, School of Computer Science
Reading Report 11 Yin Chen 1 Apr 2004
An Overview of Peer-to-Peer
Peer-to-Peer Networks and Distributed Hash Tables
A Scalable Content Addressable Network
A Scalable, Content-Addressable Network
Applications (2) Outline Overlay Networks Peer-to-Peer Networks.
Presentation transcript:

A Scalable content-addressable network Presenter: Baoning Wu

Motivation Many peer-to-peer systems appear, but most of them are not scalable. Napster needs a central server to store index of all files. Gnutella floods request with a certain scope. Can we have a scalable p2p file distribution system?

CAN (content-addressable network) Scalable indexing mechanism is crucial in scalable p2p systems. Hash table is used! (key, value) pair Each CAN node stores a chunk(zone) of the entire hash table

Design D-dimensional Cartesian co-ordinate space Map key to a point P with a determined hash function Routing the request if the point P is not owned by the requesting node or its immediate neighbors.

Picture

Routing detail Each CAN node maintains coordinate routing table that holds the IP address and virtual coordinate zone of its neighbors. Routing a message towards its destination by simple greedy forwarding to the neighbor with coordinated closest to the destination coordinates.

Design improvement: Multi-dimensioned coordinate spaces

Design improvement: Multiple coordinate spaces

Design improvement: multiple dimensions vs. multiple realities

Design improvement: RTT weighted routing

Design improvement: multiple nodes share a zone

Design improvement: multiple hash functions

Design improvement: topologically-sensitive construction

Review Dimensionality Number of realities Number of peer nodes per zone Number of hash functions Use of RTT weighted routing metric Use of topologically-sensitive construction

QUESTIONS?