Advances in the mapping of flow networks from digital elevation data

Slides:



Advertisements
Similar presentations
Spatial Analysis with ArcView: 2-D. –Calculating viewshed –Calculating line of sight –Add x and y coordinates –Deriving slope from surface data –Deriving.
Advertisements

Drainage Basin Figure 11.3 Christopherson, Elemental Geosystems, Sixth Edition Copyright © 2010 Pearson Education, Inc. 1.
Standard watershed and stream delineation recipe - Vector stream (ex. NHD data) fusion into DEM raster (burning in) - Sink removal - Flow direction - Flow.
CEE 795 Water Resources Modeling and GIS Learning Objectives: Perform raster based network delineation from digital elevation models Perform raster based.
Key Spatial Analysis Concepts from Exercise 3 Contours and Hillshade to visualize topography.
From Topographic Maps to Digital Elevation Models Daniel Sheehan DUE Office of Educational Innovation & Technology Anne Graham MIT Libraries.
Hydrologic Analysis Francisco Olivera, Ph.D., P.E. Srikanth Koka
Concept Course on Spatial Dr. A.K.M. Saiful Islam Application of GIS in Watershed Analysis Dr. A.K.M. Saiful Islam Institute of Water and Flood.
Geographic Information Systems : Data Types, Sources and the ArcView Program.
Some Potential Terrain Analysis Tools for ArcGIS David G. Tarboton
Remote Sensing and GIS in Water Dr. A.K.M. Saiful Islam Hands on training on surface hydrologic analysis using GIS Dr. A.K.M. Saiful Islam.
From Topographic Maps to Digital Elevation Models Daniel Sheehan IS&T Academic Computing Anne Graham MIT Libraries.
GIS in Water Resources: Lecture 1
FNR 402 – Forest Watershed Management
Digital Elevation Model Based Watershed and Stream Network Delineation
Hydrologic Cycle. Hydrologic Cycle Processes Surface Water Soil water Atmospheric water Groundwater Processes Precipitation Evaporation Surface Runoff.
DEM’s, Watershed and Stream Network Delineation DEM Data Sources Study Area in West Austin with a USGS 30m DEM from a 1:24,000 scale map Eight direction.
Topographic Maps vs DEM. Topographic Map 1:24,000 Scale 20 ft contour 100 ft contour Stream Center Line.
Digital Elevation Model Based Watershed and Stream Network Delineation Understanding How to use Reading
Advanced Terrain Analysis Concepts n Specific Catchment Area n The D  Surface Flow Model n Topmodel u Terrain based calculations of saturated areas and.
Creating Watersheds and Stream Networks
Terrain Stability Mapping Using the ArcView SINMAP extension David G Tarboton, Robert T Pack, Craig N Goodwin Acknowledgements n The SINMAP software was.
Esri UC 2014 | Technical Workshop | Creating Watersheds, Stream Networks and Hydrologically Conditioned DEMS Steve Kopp Dean Djokic.
Digital Elevation Model Based Watershed and Stream Network Delineation
Advanced Terrain Analysis Concepts n Specific Catchment Area n The D  Surface Flow Model n Topmodel u Terrain based calculations of saturated areas and.
Watershed and Stream Network Delineation – Geomorphological Considerations David G. Tarboton
Map-Based Flood Hydrology and Hydraulics David R. Maidment Jan 10, 1998.
Characterization of Watersheds from DEMs using Spatial Analyst/ArcHydro Robert G. Burns, P.G. Engineering Geologist DWR – Division of Safety of Dams Watershed.
David Tarboton Digital Elevation Models, Flood Inundation Mapping and River Hydraulic Properties David Tarboton
Digital Elevation Model Based Watershed and Stream Network Delineation n Conceptual Basis n Eight direction pour point model (D8) n Flow accumulation n.
Modeling Source-water Contributions to Streamflow
Extending ArcGIS via programming
Terrain Analysis Using Digital Elevation Models (TauDEM)
Hydrologic Terrain Analysis in ArcGIS
Introduction to GIS David R. Maidment
David G. Tarboton Utah State University Ude Shankar NIWA, New Zealand
David G. Tarboton 5/22/2018 Terrain Analysis and Hydrologic Modeling using Digital Elevation Models and GIS David G. Tarboton
Terrain Analysis using Grids
Map-Based Flood Hydrology and Hydraulics
Grid-Based Modeling with Digital Elevation Models
Watershed and Stream Network Delineation Including Geomorphology
Hydrologic Properties of the Landscape
STREAM NETWORK DELINEATION USING ARC HYDRO AND TauDEM: A comparison of approaches using The Upper Sevier and the Little Bear River Basins Alphonce C. Guzha.
Terrain Analysis for Water Quality Modeling
Hydrologic Properties of the Landscape
GIS, Hydrology and Terrain Analysis Using Digital Elevation Models
Terrain Analysis Using Digital Elevation Models (TauDEM) in Hydrology
Digital Elevation Model Based Watershed and Stream Network Delineation
A Geographic Information System Tool for Hydrologic Model Setup
Digital Elevation Model Based Watershed and Stream Network Delineation
Data Sources for GIS in Water Resources by David R
Digital Elevation Models and Hydrology
Key Spatial Analysis Concepts from Exercise 3
Data Sources for GIS in Water Resources by David R
Terrain analysis for stream hillslope morphology
Terrain Analysis Using Digital Elevation Models
GIS FOR HYDROLOGIC DATA DEVELOPMENT FOR DESIGN OF HIGHWAY DRAINAGE FACILITIES by Francisco Olivera and David Maidment Center for Research in Water Resources.
Lecture 5: Terrain Analysis
Terrain Analysis Using Digital Elevation Models (TauDEM)
May 18, 2016 Spring 2016 Institute of Space Technology
Terrain Analysis Using Digital Elevation Models (TauDEM)
GIS in Water Resources: Lecture 1
From GIS to HMS U.S. Army Corps of Engineers Hydrologic Engineering Center University of Texas at Austin Center for Research in Water Resources Francisco.
Prediction of Channel Response Areas due to Wildfire Disturbance using GIS and TauDEM Karen Williams GIS in Water Resources.
Environmental Modelling with RASTER DEMs: Hydrologic Features
Channels, Watersheds, Flow Related Terrain Information
Digital Elevation Models and Hydrology
Geog 380 Watershed Analysis Digital Terrain Analysis and Geomorphology
Creating Watersheds and Stream Networks
Presentation transcript:

Advances in the mapping of flow networks from digital elevation data 11/21/2018 David G. Tarboton Dan Ames http://www.engineering.usu.edu/dtarb

Hydrologic processes are different on hillslopes and in channels Hydrologic processes are different on hillslopes and in channels. It is important to recognize this and delineate model elements that account for this. Concentrated versus dispersed flow. Objective delineation of channel networks using digital elevation models. Terrain analysis using Digital Elevation Models (TauDEM) software.

Concentrated and dispersed contributing area and specific catchment area

Digital Elevation Model Based Flow Path Analysis 11/21/2018 D Eight direction pour point model D8 Grid network 4 5 6 3 7 2 1 8 1 4 3 12 2 16 25 6 Drainage Area

100 grid cell constant drainage area threshold stream delineation

200 grid cell constant drainage area based stream delineation

How to decide on drainage area threshold ? 3 12

Topographic Texture and Drainage Density Driftwood, PA Same scale, 20 m contour interval Sunland, CA

Canyon Creek, Trinity Alps, Northern California. Photo D K Hagans

Gently Sloping Convex Landscape From W. E. Dietrich

Subwatersheds (hydrologic model elements) with different support area thresholds. 500 cell theshold 1000 cell theshold

Local Curvature Computation (Peuker and Douglas, 1975, Comput Local Curvature Computation (Peuker and Douglas, 1975, Comput. Graphics Image Proc. 4:375) 11/21/2018 43 48 48 51 51 56 41 47 47 54 54 58

Contributing area of upwards curved grid cells only 11/21/2018

Stream Drop Elevation difference between ends of stream Note that a “Strahler stream” comprises a sequence of links (reaches or segments) of the same order Nodes Links Single Stream

Suggestion: Map channel networks from the DEM at the finest resolution consistent with observed channel network geomorphology ‘laws’. Look for statistically significant break in constant stream drop property Break in slope versus contributing area relationship Physical basis in the form instability theory of Smith and Bretherton (1972), see Tarboton et al. 1992

Statistical Analysis of Stream Drops Threshold = 10 Dd = 2.5 t = -3.5 Threshold = 15 Dd = 2.1 t = -2.08 Threshold = 20 Dd = 1.9 t = -1.03 Stream drop test for Mawheraiti River. For each upward curved support area threshold the stream drop for each stream is plotted against Strahler stream order. The large circles indicate mean stream drop for each order The weighted support area threshold, drainage density (in km-1) and t statistic for the difference in means between lowest order and all higher order streams is given.

Curvature based stream delineation with threshold by constant drop analysis

Software (TauDEM) Functionality Pit removal (standard flooding approach) Flow directions and slope D8 (standard) D (Tarboton, 1997, WRR 33(2):309) Flat routing (Garbrecht and Martz, 1997, JOH 193:204) Drainage area (D8 and D) Network and watershed delineation Support area threshold/channel maintenance coefficient (Standard) Combined area-slope threshold (Montgomery and Dietrich, 1992, Science, 255:826) Local curvature based (using Peuker and Douglas, 1975, Comput. Graphics Image Proc. 4:375) Threshold/drainage density selection by stream drop analysis (Tarboton et al., 1991, Hyd. Proc. 5(1):81)

TauDEM Software Architecture ESRI ArcGIS 8.1 (Awaiting release) (under development using beta) VB GUI application Standalone command line applications C++ COM DLL interface Available from TauDEM C++ library Fortran (legacy) components http://www.engineering.usu.edu/dtarb/ USU TMDLtoolkit modules (grid, shape, image, dbf, map, mapwin) ESRI gridio API (Spatial analyst) Data formats Vector shape files ASCII text grid Binary direct access grid ESRI binary grid

Conclusions Terrain analysis using digital elevation models provides considerable capability useful in hydrologic analysis. Curvature based methods allow channel network drainage density to be spatially variable and adapt to variable topographic texture. Constant stream drop law used to objectively determine support area threshold and drainage density consistent with the natural texture of the topography.

Demonstration