Conversion of Muscle to Meat

Slides:



Advertisements
Similar presentations
Energy systems Energy for muscular contraction during exercise comes from the splitting of a high energy compound (ATP). 3 systems – adenosine triphospate.
Advertisements

Aerobic Energy Systems
CONVERSION OF MUSCLE TO MEAT
Metabolism Chapter 14. Introductions to Metabolism Metabolism
Pork Quality Prepared By: Dr. Elisabeth Huff Lonergan Iowa State University.
Meat technology. At the time of slaughter, animals should be  healthy and physiologically normal.  Slaughter animals should be adequately rested. 
Contraction of Muscle. Sliding Filament Mechanism During muscle contraction, myosin cross bridges pull on the thin filaments, causing them to slide inward.
Energy Production conversion of chemical energy to mechanical energy stored in the form of ATP breakdown of ATP releases energy and produces heat –used.
Energy Systems Here we go again.
Improving Meat Tenderness Dr. John Marchello and Dr. Ron Allen.
CONVERSION OF MUSCLE INTO MEAT 4 TH YEAR VETERINARY STUDENTS.
Aerobic & Anaerobic Metabolism in Muscles
ERASTUS K. KANG’ETHE UNIVERSITY OF NAIROBI
Energy Release From Macronutrients The Concept of Energy Balance.
ATP ENERGY PRODUCTION.
Growth, Composition and Meat Quality ANSC 590 ANIMAL GROWTH AND DEVELOPMENT.
ATP of Skeletal Muscles
8.3 The Process of Photosynthesis
Unit Food Science. Problem Area Processing Animal Products.
Chapter 4 Exercise Metabolism and Bioenergetics. Objectives After this presentation, the participant will be able to: –Describe the primary methods of.
Cells at Work. 3.1 Enzymes make life possible Most reactions that take place in the cell are carried out with the help of enzymes. (Organic catalysts)
ENERGY SYSTEMS OR PATHWAYS. EATING FOR ENERGY Energy for Exercise  The food is broken down into soluble chemicals (e.g. glucose) by digestion in the.
Aerobic & Anaerobic Metabolism in Muscles. Objectives Recognize the importance of ATP as energy source in skeletal muscle. Understand how skeletal muscles.
INTRO TO ENERGY SYSTEMS. 4 MAJOR STEPS TO PRODUCE ENERGY STEP 1 – Breakdown a fuel STEP 2 – Produce ATP via energy systems STEP 3 - Breakdown ATP to release.
WHAT IS ATP ? Carbohydrates, Fats and Protein – contain energy, however we can’t use it directly. These nutrients are used to form a chemical compound.
Energy Systems. Fuel for Muscle Contraction Carbohydrates, fats and protein are broken down to form an energy rich molecule called Adenosine Triphosphate.
Substrate Breakdown The free Energy of oxidation of a food is the amount of energy liberated by the complete oxidation of the food.
Sports Nutrition Lesson 18.
Sources of Energy for Exercise Kevin Browne The human body is made to move in many ways: Quick and powerful Graceful & coordinated Sustained for many.
Energy Systems Glucose is the usual form of CHO used by animals including humans Stored in skeletal muscle and the liver as glycogen and broken down under.
Lesson Overview Lesson Overview The Process of Photosynthesis THINK ABOUT IT Why do chloroplasts contain so many membranes? When most pigments absorb light,
Lecture 5 Post Mortem Changes in Meat/Conversion of Muscle to Meat The conversion of muscle to meat involves a number of physical and chemical changes.
Energy for Muscular Activity
Muscle Fatigue.
Nutrition for Exercise and Sport Energy Systems Applying the Principles of Nutrition to a Physical Activity Programme.
Lecture 10   MEAT HANDLING   Pre-Slaughter Handling and Stunning of Cattle There is an increasing demand for animals to be reared, handled, transported.
Energy systems Learning outcomes:
Level 3 Anatomy and Physiology for Exercise and Health
Lecture 3   Categories of Heat-Treated Preserves Pasteurized products This requires only slight thermal treatment. Temperatures reached in the product.
Physiological Adaptations in Response to Training
Exercise and the Energy Systems
Chapter 4 Exercise Metabolism and Bioenergetics
Chapter 5: Nutritional Considerations
Objective: SWBAT use the evidence of livor mortis, rigor mortis, and algor mortis to calculate the approximate time of death Do Now:
ENERGY SYSTEMS Week 10.
The use of Chemical Signals to Maintain Homeostasis
Converting Energy Chapter 5
PHOTOSYNTHESIS and RESPIRATION
The Process of Photosynthesis
Chapter 13 BIOL 1400 Dr. Mohamad H. Termos
Factors Affecting Performance
Exercise Science Section 5: Energy Systems and Muscle Fiber Types
Muscle to Meat Conversion
PSE 4U Section 5 Energy Systems
Anaerobic Glycolysis System
EXERCISE: The Effect On The Body
Chemical Reactions A chemical reaction breaks down some substances and builds other substances 2H2 + O > 2H2O Chemical reactions can occur when.
Energy systems and their role in sport and exercise
Chemical Reactions A chemical reaction breaks down some substances and builds other substances 2H2 + O > 2H2O Chemical reactions can occur when.
Fueling physical activity and fatigue
Role of ATP ATP (provided by mitochondria)
Energy Systems and Muscle Fibre Types
Meat color.
ATP and Energy Pathways
To understand and be able to explain the role of the 3 energy systems.
Chapter 5: Nutritional Considerations
Endocrine system Module 4- Training.
Food fuels.
Oxygen Uptake Oxygen Debt Oxygen Deficit
Energy Systems for Exercise
Presentation transcript:

Conversion of Muscle to Meat Dr. Ir. Jamhari, M.Agr.Sc., IPM. Dr. Endy Triyannanto, S.Pt., M.Eng.

Introduction Muscle function and meat quality. Muscles do not suddenly terminate all their living functions and become meat. A number physical and chemical change take place over a period of several hours or even days. It is a gradual degradative process. 平成30年11月21日平成30年11月21日

Homeostatis In the living state, all organs and systems within the body cooperate to maintain an internal environment under which each can perform its function efficiently. Only within a narrow range of physiological condition (pH, Temperature, O2 , and energy). Maintenance of the physiologically balance internal environment = Homeostasis. 平成30年11月21日平成30年11月21日

Homeostatis Can be regulate by the nervous system and the endocrine system. These two systems serve as communication and starring mechanism and adjust the function of various organs during period of stress. 平成30年11月21日平成30年11月21日

If homeostasis is broken Many of the reactions and changes that occurred and affected the development of the quality of meat. Also, preslaughter stress or environment (immobilization and exsanguinations) may alter postmortem changes due to irregulation in living animal bodies. 平成30年11月21日平成30年11月21日

Handling preslaughter Immobilization: make animal unconscious = the first step. Make blood pressure elevate or excessive nerve stimulation = cause tissue damage. Exsanguination = the removal of as much blood as possible. In fact, only about 50% of the total blood volume can be removed from the body. 平成30年11月21日平成30年11月21日

Exsanguination Marks the beginning of a series of postmortem changes in the muscle. Since blood is an excellent medium for growth of spoilage organisms and excess blood in meat cuts is unappealing to the consumers, a thorough bleeding is an essential beginning to the slaughter process. 平成30年11月21日平成30年11月21日

What condition will be occurred after bleeding The circulatory system will be stopped. Oxygen and nutrient and wastes also will be stopped transportation. The aerobic pathway through the TCA cycle and the electron transport chain stops function. 平成30年11月21日平成30年11月21日

What condition will be occurred after bleeding Less energy in the form of ATP is produced through the anaerobic pathway. Lactic acid will remain in muscle tissue and increase in concentration as metabolism proceeds. Heat can make body temperature increased. 平成30年11月21日平成30年11月21日

Postmortem pH decline The lowering of pH in muscle due to the accumulation of lactic acid. One of the most significant postmortem changes. Approximately pH 7.4 in living muscle. 平成30年11月21日平成30年11月21日

Normal condition pH 7.4 6-8 hours pH 5.6-5.7 and the an ultimate pH (24 hrs postmortem) of about 5.3-5.7. 平成30年11月21日平成30年11月21日

Temperature and pH Temperature plays a key role in denaturation. High temp can make a fast heat of continuous metabolism ( glycolysis , lactic acid , pH) and also make the pH of the carcass rapidly decline (5.2-5.4). 平成30年11月21日平成30年11月21日

Denaturation A loss of protein solubility. Loss of water Loss of protein bonding capacity Loss in intensity of muscle pigment coloration. 平成30年11月21日平成30年11月21日

Conversion of muscle into meat The formation of lactic acid will lead to the decrease in meat pH. The decrease in meat pH depends on glycogen reserve when animal is slaughtered. Normal pH of muscle during slaughter (7,0) will decrease to be the ultimate pH (5,4-5,8) after slaughter. 平成30年11月21日平成30年11月21日

Conversion of muscle into meat The level of pH decrease determines the quality of the resulted meat. In animals which are stressed or over-fed, the process of pH decrease will occur very quickly, when carcass is still hot, resulting in meat which is pale in color, soft, exudative or PSE. 平成30年11月21日平成30年11月21日

Conversion of muscle into meat In exhausted animals, the amount of glycogen reserve is very low so that the lactic acid formed is also low, so that meat pH is relatively high, resulting in dark, firm, dry or DFD. 平成30年11月21日平成30年11月21日

Pale Soft Exudative (PSE) PSE is said to have occurred when the pH of meat is < 6 at 45 minutes after slaughter. Meats with pH at 45 minutes being lower than 6.0 Meats with pH ultimate value of 5.3. PSE is due to acute stress just before slaughtering. 平成30年11月21日平成30年11月21日

Causes of acute stress The use of electric goads, Fighting among animal just before sticking, Beating of animals prior to slaughter Overcrowding in the lairage, Acidification in muscles post-mortem due to the breakdown of glycogen to lactic acid. 平成30年11月21日平成30年11月21日

Causes of acute stress combination of low pH and high temperature meat causes the denaturation of some muscle proteins. There is light scattering from meat surface. 平成30年11月21日平成30年11月21日

Dark Firm Dry (DFD) DFD (also known as dark cutting in beef) is when the ultimate pH postmortem measured after 12 – 48 hours is ≥ 6. Meats with pH at 45 minutes being 6.4 Meats with pH ultimate value higher than 6.0 DFD is due to chronic or long term stress before slaughtering. 平成30年11月21日平成30年11月21日

Causes of cronic stress transportation animals over long distances, long hours of food deprivation, Overcrowding of animals in the lairage over a long period of time. Less glycogen is available affecting the normal process of acidification and leaving the pH of meat high. 平成30年11月21日平成30年11月21日

Causes of cronic stress High pH results in relatively little denaturation of proteins, water is tightly bound and little or no exudates. Muscles absorbed light making the meat appear darker. 平成30年11月21日平成30年11月21日

How to prevent PSE and DFD To develop breeds that are resistance to stress. More males could be bred for meat purposes. Loading of animals onto trucks for transportation to the abattoir has to be done with minimum stress. 平成30年11月21日平成30年11月21日

How to prevent PSE and DFD loading should be done in a quiet atmosphere, avoiding the use of sticks and other forms of force. trained on proper ways of handling animals. unloaded immediately when they arrive at the slaughter house. Unloading of animals at the abattoir should also be done in a quiet and gentle manner. 平成30年11月21日平成30年11月21日

How to prevent PSE and DFD Keep transportation and marketing times short. Keep animals in their rearing at the same group. Animals should be rested enough to recover from stress before slaughtering. Provide animals with food and water if they will spend more time in the lairage. 平成30年11月21日平成30年11月21日

How to prevent PSE and DFD Provide beddings or straw on the floor if the animals will keep longer. resting period of between 2 – 4 hour in the lairage prior to stunning and/or sticking. Abattoirs must be well designed. Stunning methods render animals unconscious prior to sticking. Carcasses are normally chilled after dressing. 平成30年11月21日平成30年11月21日

PSE and DFD 平成30年11月21日平成30年11月21日

PSE and DFD Muscle color Glycogen at death Glycogen at 24 hr Lactate production Ultimate muscle pH Normal 1.0% 0.1% high 5.6 Dark 0.3% low 6.0 to 6.5 Pale 0.6% very high 5.1 平成30年11月21日平成30年11月21日

In living muscle 平成30年11月21日平成30年11月21日

In dying muscle, lactic acid accumulates and lowers pH. glycogen ——-> lactic acid muscle pH: 7.0 ——-> 5.6 (because of lactic acid) muscle color: purple changes to bright red or pink (pH 7.0 ——-> 5.6) 平成30年11月21日平成30年11月21日

 Water found in meat Bound (charged hydrophilic groups on the muscle proteins attract water, forming a tightly bound layer). Immobilized (has less orderly molecular orientation toward the charged group). Free (held only by capillary forces, and their orientation is independent of the charged group). 平成30年11月21日平成30年11月21日

Relationships between pH and WHC of meat 平成30年11月21日平成30年11月21日

Relationships between pH and WHC of meat pH also is important in determining the water-holding capacity of meat, the ability of meat to retain its water during application of external forces such as cutting, heating, grinding, or pressing. Where water-holding capacity is the lowest is the isoelectric point, where the number of positively and negatively charged groups of the myofibrillar proteins is equal.  平成30年11月21日平成30年11月21日

Methods of tenderizing meat Chilling is the process of carcass chilling at the temperature of 0-5oC for 24 hours. Aging is the process of hanging the carcass/meat at the chilling temperature for certain duration of time. Enzyme application, is addition of external protease enzyme to tenderize meat, such as bromelain or papain. 平成30年11月21日平成30年11月21日

Postmortem Changes Change in the structure of protein due to the process of denaturation. Meat is more easily broken up by proteolytic enzyme, so that it becomes more tender. Occurrence of meat pigment oxidation, so that change in the meat color occurs. Occurrence of fat oxidation, resulting in flavor. 平成30年11月21日平成30年11月21日

Rigormortis Rigormortis as a phenomenon is the stiffness of the muscles of an animal following the death After the death of an animal, the oxygen supply ceases. However, glycogen reserve in the muscle before death is converted ‐through enzymatic activity‐ into lactic acid accompanied by a fall in the pH. The amount of lactic acid depends on the glycogen reserves. 平成30年11月21日平成30年11月21日

Rigormortis The stiffening of muscles is attributed to the dynamics of adenosine triphosphate (ATP) and adenosine diphosphate (ADP) within the muscles accompanied lactic acid accumulation and the fall of pH Immediately after death in the pre‐rigor phase, the muscles of an animal are soft. After several hours (p g de ending on several factors), muscles begin to stiffen and harden. 平成30年11月21日平成30年11月21日

Rigormortis Stiffness continues reaching its maximum and last for hours or days before muscles start to relax again 平成30年11月21日平成30年11月21日

Rigormortis One of the most dramatic postmortem change. The formation of permanent crossbridges in muscle. That forms actomyosin. Can be relax in living animal but be broken by enzymes in carcass. 平成30年11月21日平成30年11月21日

The onset of rigormortis Lss of elasticity. Loss of extensibility, shortening and tension development. The time required for muscle of different animal species to enter the onset of rigor mortis will be showed in Table. 平成30年11月21日平成30年11月21日

Resolution or softening of rigormortis Alteration in ultra-structure of myofilaments Changes in other protein of the cytoskeleton Action of neutral protease enzymes Relate directly to tenderization in meat aging. 平成30年11月21日平成30年11月21日

Cathepsins Proteolytic enzymes Hold in lysosomes. As the pH of the muscle drop(pH<5.6), these enzymes are released and probably begin to degrade protein structure of the muscle. 平成30年11月21日平成30年11月21日

Calpains Calcium activated muscle protease pH optima at 6.6-6.8 Are found in sarcoplasm in myofibers 平成30年11月21日平成30年11月21日

Factors affecting postmortem changes and meat quality Meat quality: tenderness, juiciness, color and flavor. Processing properties: emulsifying capacity, binding ability, cooking loss, cooked meat color. Some ante- or post mortem’s factors will affect above conditions. 平成30年11月21日平成30年11月21日

Antemortem The new environment or stress –heat or cold Are aided by the release of certain hormones- epinephrine and nor-epinephrine –respond Sex - odor (boar) 平成30年11月21日平成30年11月21日

Antemortem Diet- fasting 12-24 hrs for animal before slaughter Pre-slaughter handling : transportation, loading. Stunning:should be followed as quickly as possible by rapid bleeding 平成30年11月21日平成30年11月21日

Postmortem Temperature : chilled quickly as possible. To minimize protein denaturation. To inhibit growth of microorganisms. 平成30年11月21日平成30年11月21日

Thaw rigor Resulting from low temperature in muscle before onset of rigor mortis. Is a severe type of rigor mortis that develops when muscle that was frozen pre-rigor is thawed. By sudden release of Ca+2 into the sarcoplasm and cause a physical shortening of 60-80% of original length. Meat quality-dry and severe toughening. 平成30年11月21日平成30年11月21日

Cold shrortening Resulting from low temperature in muscle before onset of rigor mortis Chilled temperature above 0oC but below 15-16oC. Shortening is less severe than that of thaw rigor. The problem may becomes more serious as efforts are made to produce animals with less fat- Beef and Lamb. 平成30年11月21日平成30年11月21日

Heat rigor Severe shortening may be induced by maintaining muscle at relatively high temperature (up to 50oC). Is the result of a rapid depletion of ATP stores. 平成30年11月21日平成30年11月21日

Electrical stimulation (ES) Used to improve tenderness and meat quality in turkey, lamb, beef and veal. Is acceleration of rate of postmortem pH decline. Is hastening of rigor mortis 平成30年11月21日平成30年11月21日

Meat tenderization by ES Cold shortening prevention through acceleration of glycolysis and rigor onset. Proteolytic enzymes activation through acidification at high temperatures. Physical disruption of fiber structure through extreme muscle contraction. Varies from 30-3600 volts. 平成30年11月21日平成30年11月21日