Lecture 14: Reducing Cache Misses

Slides:



Advertisements
Similar presentations
Anshul Kumar, CSE IITD CSL718 : Memory Hierarchy Cache Performance Improvement 23rd Feb, 2006.
Advertisements

Lecture 8: Memory Hierarchy Cache Performance Kai Bu
Lecture 12 Reduce Miss Penalty and Hit Time
CSE 490/590, Spring 2011 CSE 490/590 Computer Architecture Cache III Steve Ko Computer Sciences and Engineering University at Buffalo.
Computation I pg 1 Embedded Computer Architecture Memory Hierarchy: Cache Recap Course 5KK73 Henk Corporaal November 2014
CMSC 611: Advanced Computer Architecture Cache Some material adapted from Mohamed Younis, UMBC CMSC 611 Spr 2003 course slides Some material adapted from.
1 Adapted from UCB CS252 S01, Revised by Zhao Zhang in IASTATE CPRE 585, 2004 Lecture 14: Hardware Approaches for Cache Optimizations Cache performance.
1 COMP 206: Computer Architecture and Implementation Montek Singh Wed, Nov 2, 2005 Mon, Nov 7, 2005 Topic: Caches (contd.)
Caches Vincent H. Berk October 21, 2005
1 COMP 206: Computer Architecture and Implementation Montek Singh Wed., Nov. 10, 2003 Topic: Caches (contd.)
1 Chapter Seven Large and Fast: Exploiting Memory Hierarchy.
CS252/Culler Lec 4.1 1/31/02 CS203A Graduate Computer Architecture Lecture 14 Cache Design Taken from Prof. David Culler’s notes.
Memory Hierarchy Design Chapter 5 Karin Strauss. Background 1980: no caches 1995: two levels of caches 2004: even three levels of caches Why? Processor-Memory.
EENG449b/Savvides Lec /1/04 April 1, 2004 Prof. Andreas Savvides Spring EENG 449bG/CPSC 439bG Computer.
Reducing Cache Misses (Sec. 5.3) Three categories of cache misses: 1.Compulsory –The very first access to a block cannot be in the cache 2.Capacity –Due.
EENG449b/Savvides Lec /13/04 April 13, 2004 Prof. Andreas Savvides Spring EENG 449bG/CPSC 439bG Computer.
1 COMP 206: Computer Architecture and Implementation Montek Singh Wed, Nov 9, 2005 Topic: Caches (contd.)
Memory: Virtual MemoryCSCE430/830 Memory Hierarchy: Virtual Memory CSCE430/830 Computer Architecture Lecturer: Prof. Hong Jiang Courtesy of Yifeng Zhu.
ENGS 116 Lecture 131 Caches and Virtual Memory Vincent H. Berk October 31 st, 2008 Reading for Today: Sections C.1 – C.3 (Jouppi article) Reading for Monday:
1 SRAM: –value is stored on a pair of inverting gates –very fast but takes up more space than DRAM (4 to 6 transistors) DRAM: –value is stored as a charge.
CS252/Kubiatowicz Lec 3.1 1/24/01 CS252 Graduate Computer Architecture Lecture 3 Caches and Memory Systems I January 24, 2001 Prof. John Kubiatowicz.
Reducing Cache Misses 5.1 Introduction 5.2 The ABCs of Caches 5.3 Reducing Cache Misses 5.4 Reducing Cache Miss Penalty 5.5 Reducing Hit Time 5.6 Main.
EENG449b/Savvides Lec /7/05 April 7, 2005 Prof. Andreas Savvides Spring g449b EENG 449bG/CPSC 439bG.
Lec17.1 °Q1: Where can a block be placed in the upper level? (Block placement) °Q2: How is a block found if it is in the upper level? (Block identification)
1 CSE SUNY New Paltz Chapter Seven Exploiting Memory Hierarchy.
Lecture 33: Chapter 5 Today’s topic –Cache Replacement Algorithms –Multi-level Caches –Virtual Memories 1.
CSC 4250 Computer Architectures December 5, 2006 Chapter 5. Memory Hierarchy.
Computer Architecture Ch5-1 Ping-Liang Lai ( 賴秉樑 ) Lecture 5 Review of Memory Hierarchy (Appendix C in textbook) Computer Architecture 計算機結構.
Caches Where is a block placed in a cache? –Three possible answers  three different types AnywhereFully associativeOnly into one block Direct mappedInto.
Chapter 5 Memory III CSE 820. Michigan State University Computer Science and Engineering Miss Rate Reduction (cont’d)
Improving Cache Performance Four categories of optimisation: –Reduce miss rate –Reduce miss penalty –Reduce miss rate or miss penalty using parallelism.
M E M O R Y. Computer Performance It depends in large measure on the interface between processor and memory. CPI (or IPC) is affected CPI = Cycles per.
Lecture 15 Calculating and Improving Cache Perfomance
Nov. 15, 2000Systems Architecture II1 Machine Organization (CS 570) Lecture 8: Memory Hierarchy Design * Jeremy R. Johnson Wed. Nov. 15, 2000 *This lecture.
Improving Direct-Mapped Cache Performance by the Addition of a Small Fully-Associative Cache And Pefetch Buffers Norman P. Jouppi Presenter:Shrinivas Narayani.
1 CPRE 585 Term Review Performance evaluation, ISA design, dynamically scheduled pipeline, and memory hierarchy.
Computer Organization CS224 Fall 2012 Lessons 41 & 42.
Memory Hierarchy—Improving Performance Professor Alvin R. Lebeck Computer Science 220 Fall 2008.
Prefetching Techniques. 2 Reading Data prefetch mechanisms, Steven P. Vanderwiel, David J. Lilja, ACM Computing Surveys, Vol. 32, Issue 2 (June 2000)
1 Adapted from UC Berkeley CS252 S01 Lecture 17: Reducing Cache Miss Penalty and Reducing Cache Hit Time Hardware prefetching and stream buffer, software.
High Performance Computing1 High Performance Computing (CS 680) Lecture 2a: Overview of High Performance Processors * Jeremy R. Johnson *This lecture was.
Memory Hierarchy— Five Ways to Reduce Miss Penalty.
Chapter 5 Memory Hierarchy Design. 2 Many Levels in Memory Hierarchy Pipeline registers Register file 1st-level cache (on-chip) 2nd-level cache (on same.
1 Memory Hierarchy Design Chapter 5. 2 Cache Systems CPUCache Main Memory Data object transfer Block transfer CPU 400MHz Main Memory 10MHz Bus 66MHz CPU.
Chapter 5 Memory II CSE 820. Michigan State University Computer Science and Engineering Equations CPU execution time = (CPU cycles + Memory-stall cycles)
COMP 740: Computer Architecture and Implementation
Memory Hierarchy 3 Cs and 6 Ways to Reduce Misses
CSC 4250 Computer Architectures
Multilevel Memories (Improving performance using alittle “cash”)
Lecture: Cache Hierarchies
The University of Adelaide, School of Computer Science
Lecture 9: Memory Hierarchy (3)
5.2 Eleven Advanced Optimizations of Cache Performance
Cache Memory Presentation I
Lecture: Cache Hierarchies
CPE 631 Lecture 06: Cache Design
Lecture 14 Virtual Memory and the Alpha Memory Hierarchy
CMSC 611: Advanced Computer Architecture
Advanced Computer Architectures
Chapter 5 Memory CSE 820.
Lecture 08: Memory Hierarchy Cache Performance
CS203A Graduate Computer Architecture Lecture 13 Cache Design
Lecture: Cache Innovations, Virtual Memory
Memory Hierarchy.
Siddhartha Chatterjee
Summary 3 Cs: Compulsory, Capacity, Conflict Misses Reducing Miss Rate
Cache - Optimization.
Cache Memory Rabi Mahapatra
Cache Performance Improvements
10/18: Lecture Topics Using spatial locality
Presentation transcript:

Lecture 14: Reducing Cache Misses Cache optimization approaches, cache miss rate reduction, cache miss rate reductions This lecture will cover sections 1.1-1.4: introduction, application, technology trends, cost and price. Adapted from UCB CS252 S01 Adapted from UCB CS252 S01, Copyright 2001 USB

Evaluating Cache Performance for Out-of-order Processors Recall AMAT = hit time + miss rate x miss penalty Very difficult to define miss penalty to fit in this simple model, in the context of OOO processors Consider overlapping between computation and memory accesses Consider overlapping among memory accesses for more than one misses We may assume a certain percentage of overlapping In practice, the degree of overlapping varies significantly between There are techniques to increase the overlapping, making the cache performance even unpredictable Cache hit time can also be overlapped The increase of CPI is usually not counted in memory stall time

Simple Example Consider an OOO processors into the previous example (slide 18) Slow clock (1.25x base cycle time) Direct mapped cache Overlapping degree of 30% Average miss penalty = 70% * 75ns = 52.5ns AMAT = 1.0x1.25 + (0.014x52.5) = 1.99ns CPU time = ICx(2x1.0x1.25+(1.5x0.014x52.5))=3.60xIC Compare: 3.58 for in-order + direct mapped, 3.63 for in-order + two-way associative This is only a simplified example; ideal CPI could be improved by OOO execution

Cache Optimization Space Total cache size: Determines chip area and number of transistors Performance factors: Miss rate, miss penalty, and hit time Organization: Set Associativity and block size Multi-level organizations Auxiliary structures, e.g., to predict future accesses Main memory and memory interface design Software Approaches Optimize memory access patterns Software prefetching Execution time increase is the final measurement, and AMAT is a good approximation. Other metrics: miss per instruction, memory CPI

Improving Cache Performance Reducing miss rates Larger block size larger cache size higher associativity way prediction Pseudoassociativity compiler optimization Reducing miss penalty Multilevel caches critical word first read miss first merging write buffers victim caches Reducing miss penalty or miss rates via parallelism Reduce miss penalty or miss rate by parallelism Non-blocking caches Hardware prefetching Compiler prefetching Reducing cache hit time Small and simple caches Avoiding address translation Pipelined cache access Trace caches

Classifying cache misses Classifying misses by causes (3Cs) Compulsory—To bring blocks into cache for the first time. Also called cold start misses or first reference misses. (Misses in even an Infinite Cache) Capacity—Cache is not large enough such that some blocks are discarded and later retrieved. (Misses in Fully Associative Size X Cache) Conflict—For set associative or direct mapped caches, blcoks can be discarded and later retrieved if too many blocks map to its set. Also called collision misses or interference misses. (Misses in N-way Associative, Size X Cache) More recent, 4th “C”: Coherence - Misses caused by cache coherence. To be discussed in multiprocessor Intuitive Model by Mark Hill

3Cs Absolute Miss Rate (SPEC92) Conflict Compulsory vanishingly small

2:1 Cache Rule miss rate 1-way associative cache size X = miss rate 2-way associative cache size X/2 Conflict

3Cs Relative Miss Rate Conflict Flaws: for fixed block size Good: insight => invention

How To Reduce Misses? 3 Cs: Compulsory, Capacity, Conflict In all cases, assume total cache size not changed: What happens if: 1) Change Block Size: Which of 3Cs is obviously affected? 2) Change Associativity: Which of 3Cs is obviously affected? 3) Change Compiler: Which of 3Cs is obviously affected? Ask which affected? Block size 1) Compulsory 2) More subtle, will change mapping

1. Reduce Misses via Larger Block Size

2. Reduce Misses via Higher Associativity 2:1 Cache Rule: Miss Rate DM cache size N ­ Miss Rate 2-way cache size N/2 Beware: Execution time is only final measure! Will Clock Cycle time increase? Hill [1988] suggested hit time for 2-way vs. 1-way external cache +10%, internal + 2% Jouppi’s Cacti model: estimate cache access time by block number, block size, associativity, and technology Note cache access time also increases with cache size!

Example: Avg. Memory Access Time vs. Miss Rate Example: assume CCT = 1.10 for 2-way, 1.12 for 4-way, 1.14 for 8-way vs. CCT direct mapped Cache Size Associativity (KB) 1-way 2-way 4-way 8-way 1 2.33 2.15 2.07 2.01 2 1.98 1.86 1.76 1.68 4 1.72 1.67 1.61 1.53 8 1.46 1.48 1.47 1.43 16 1.29 1.32 1.32 1.32 32 1.20 1.24 1.25 1.27 64 1.14 1.20 1.21 1.23 128 1.10 1.17 1.18 1.20 (Red means A.M.A.T. not improved by more associativity)

3. Reducing Misses via a “Victim Cache” How to combine fast hit time of direct mapped yet still avoid conflict misses? Add buffer to place data discarded from cache Jouppi [1990]: 4-entry victim cache removed 20% to 95% of conflicts for a 4 KB direct mapped data cache Used in Alpha, HP machines TAGS DATA Tag and Comparator One Cache line of Data Tag and Comparator One Cache line of Data Tag and Comparator One Cache line of Data Tag and Comparator One Cache line of Data To Next Lower Level In Hierarchy

4. Reducing Misses via “Pseudo-Associativity” How to combine fast hit time of Direct Mapped and have the lower conflict misses of 2-way SA cache? Divide cache: on a miss, check other half of cache to see if there, if so have a pseudo-hit (slow hit) Drawback: CPU pipeline is hard if hit takes 1 or 2 cycles Better for caches not tied directly to processor (L2) Used in MIPS R1000 L2 cache, similar in UltraSPARC Hit Time Pseudo Hit Time Miss Penalty Time

5. Reducing Misses by Hardware Prefetching of Instructions & Datals E.g., Instruction Prefetching Alpha 21064 fetches 2 blocks on a miss Extra block placed in “stream buffer” On miss check stream buffer Works with data blocks too: Jouppi [1990] 1 data stream buffer got 25% misses from 4KB cache; 4 streams got 43% Palacharla & Kessler [1994] for scientific programs for 8 streams got 50% to 70% of misses from 2 64KB, 4-way set associative caches Prefetching relies on having extra memory bandwidth that can be used without penalty

6. Reducing Misses by Software Prefetching Data Data Prefetch Load data into register (HP PA-RISC loads) Cache Prefetch: load into cache (MIPS IV, PowerPC, SPARC v. 9) Special prefetching instructions cannot cause faults; a form of speculative execution Prefetching comes in two flavors: Binding prefetch: Requests load directly into register. Must be correct address and register! Non-Binding prefetch: Load into cache. Can be incorrect. Frees HW/SW to guess! Issuing Prefetch Instructions takes time Is cost of prefetch issues < savings in reduced misses? Higher superscalar reduces difficulty of issue bandwidth