EE359 – Lecture 12 Outline Announcements Transmit Diversity

Slides:



Advertisements
Similar presentations
EE359 – Lecture 8 Outline Capacity of Fading channels Fading Known at TX and RX Optimal Rate and Power Adaptation Channel Inversion with Fixed Rate Capacity.
Advertisements

Prakshep Mehta ( ) Guided By: Prof. R.K. Shevgaonkar
The Impact of Channel Estimation Errors on Space-Time Block Codes Presentation for Virginia Tech Symposium on Wireless Personal Communications M. C. Valenti.
EE359 – Lecture 10 Outline Announcements: Project proposals due this Friday at 5pm (post, link) Midterm will be Nov. 7, 6-8pm, Room TBD, no HW due.
EE359 – Lecture 9 Outline Announcements: Project proposals due this Friday at 5pm; create website Midterm date: Thurs Nov. 7, 5:30-7:30 or 6-8pm? Practice.
EE359 – Lecture 10 Outline Announcements: Project proposals due today at 5pm (post, link) Midterm will be Nov. 4, 6-8pm, Room TBD, no HW due that.
Diversity techniques for flat fading channels BER vs. SNR in a flat fading channel Different kinds of diversity techniques Selection diversity performance.
EE359 – Lecture 16 Outline Announcements: HW due Friday MT announcements Rest of term announcements MIMO Diversity/Multiplexing Tradeoffs MIMO Receiver.
Optimization of pilot Locations in Adaptive M-PSK Modulation in a Rayleigh Fading Channel Khaled Almustafa Information System Prince Sultan University.
IERG 4100 Wireless Communications
Coded Modulation in Fading Channels Ryan Aures Matthew Holland ECE 492 Mobile Communications.
Space Time Block Codes Poornima Nookala.
Muhammad Imadur Rahman1, Klaus Witrisal2,
EE359 – Lecture 12 Outline Announcements Midterm announcements No HW next week (practice MTs) Maximal Ratio Combining MGF Approach to MRC Performance Equal.
EE359 – Lecture 12 Outline Announcements Midterm announcements No HW next week (practice MTs) Maximal Ratio Combining MGF Approach to MRC Performance Transmit.
1 Lecture 9: Diversity Chapter 7 – Equalization, Diversity, and Coding.
EE359 – Lecture 12 Outline Announcements Midterm announcements No HW next week (practice MTs) Combining Techniques Maximal Ratio Combining MGF Approach.
EE359 – Lecture 13 Outline Annoucements Midterm announcements No HW this week (study for MT; HW due next week) Midterm review Introduction to adaptive.
Lecture 7,8: Diversity Aliazam Abbasfar. Outline Diversity types Diversity combining.
Wireless Mobile Communication and Transmission Lab. Chapter 8 Application of Error Control Coding.
EE359 – Lecture 14 Outline Announcements: HW posted tomorrow, due next Thursday Will send project feedback this week Practical Issues in Adaptive Modulation.
EE359 – Lecture 13 Outline Adaptive MQAM: optimal power and rate Finite Constellation Sets Practical Constraints Update rate Estimation error Estimation.
Space Time Codes. 2 Attenuation in Wireless Channels Path loss: Signals attenuate due to distance Shadowing loss : absorption of radio waves by scattering.
EE359 – Lecture 12 Outline Combining Techniques
A Simple Transmit Diversity Technique for Wireless Communications -M
EE359 – Lecture 15 Outline Announcements: HW posted, due Friday MT exam grading done; l Can pick up from Julia or during TA discussion section tomorrow.
EE359 – Lecture 12 Outline Announcements Midterm announcements HW 5 due Friday, 11/4, at noon (no late HWs) No HW next week (work on projects) MGF Approach.
EE359 – Lecture 16 Outline Announcements Proposals due this Friday, 5pm (create website, url) HW 7 posted today, due 12/1 TA evaluations: 10 bonus.
Midterm Review Midterm only covers material from lectures and HWs
EE359 – Lecture 11 Outline Announcements Class project links posted (please check). Will have comments back this week. Midterm announcements No HW next.
Lecture 17 Outline: DFT Properties and Circular Convolution
EE359 – Lecture 13 Outline Annoucements Midterm announcements No HW this week (study for MT; HW due next week) Introduction to adaptive modulation Variable-rate.
Diversity.
EE359 – Lecture 19 Outline Announcements Final Exam Announcements HW 8 (last HW) due Sunday 5pm (no late HWs) Bonus lecture today 6-8pm (pizza/cake); Hewlett.
EE359 – Lecture 16 Outline ISI Countermeasures Multicarrier Modulation
EE359 – Lecture 14 Outline Announcements
EE359 – Lecture 15 Outline Announcements: MIMO Channel Capacity
EE359 – Lecture 14 Outline Practical Issues in Adaptive Modulation
EE359 – Lecture 2 Outline Announcements Review of Last Lecture
EE359 – Lecture 8 Outline Capacity of Flat-Fading Channels
EE359 – Lecture 11 Outline Doppler and ISI Performance Effects
Space Time Codes.
EE359 – Lecture 3 Outline Announcements Log Normal Shadowing
Space-Time and Space-Frequency Coded Orthogonal Frequency Division Multiplexing Transmitter Diversity Techniques King F. Lee.
Techniques to control noise and fading
Advanced Wireless Networks
Advanced Wireless Networks
EE359 – Lecture 12 Outline Maximal Ratio Combining
EE359 – Lecture 11 Outline Announcements
EE359 – Lecture 13 Outline Announcements
EE359 – Lecture 15 Outline Announcements: MIMO Channel Capacity
Midterm Review Midterm only covers material from lectures and HWs
Diversity Lecture 7.
Space Time Coding and Channel Estimation
EE359 – Lecture 13 Outline Announcements
EE359 – Lecture 9 Outline Announcements: Linear Modulation Review
Master Thesis Presentation
EE359 – Lecture 11 Outline Introduction to Diversity
EE359 – Lecture 9 Outline Linear Modulation Review
EE359 – Lecture 10 Outline Announcements: MGF approach for average Ps
EE359 – Lecture 10 Outline Announcements: Average Ps (Pb)
EE359 – Lecture 14 Outline Announcements:
MIMO (Multiple Input Multiple Output)
EE359 – Lecture 8 Outline Announcements Capacity of Fading channels
EE359 – Lecture 10 Outline Announcements: Average Ps (Pb)
EE359 – Lecture 18 Outline Announcements Spread Spectrum
Midterm Review Midterm only covers material from lectures and HWs
EE359 – Lecture 7 Outline Shannon Capacity
EE359 – Lecture 11 Outline Announcements Introduction to Diversity
EE359 – Lecture 19 Outline Multiple Access
Presentation transcript:

EE359 – Lecture 12 Outline Announcements Transmit Diversity Midterm announcements No HW next week (practice MTs) HW5 posted, due Monday 4pm (no late HWs) Transmit Diversity Midterm Review Introduction to adaptive modulation Variable-rate variable-power MQAM Optimal power and rate adaptation

Midterm Announcements Midterm: Thursday (11/9), 6-8 pm in (room TBD) Food will be served after the exam! Review sessions My midterm review will be during tomorrow’s makeup lecture TA review: Monday 11/6 from 4-6 pm in 364 Packard Midterm logistics: Open book/notes; Bring textbook/calculators (have extras; adv. notice reqd) Covers Chapters 1-7 (sections covered in lecture and/or HW) Special OHs next week: Me: Wed 11/8: 9-11am, Thu 11/9: 12-2pm all in 371 Packard Milind: Tues 11/7, 4-6pm, 3rd Floor Packard Kitchen Area + email Tom: Wed 11/8: 5-7pm, Thu 11/9 2-4pm, 3rd Floor Packard Kitchen Area + email No HW next week Midterms from past 3 MTs posted: 10 bonus points for “taking” a practice exam Solutions for all exams given when you turn in practice exam

Review of Last Lecture Array Structure of a Diversity Combiner Performance metrics: Outage probability and average probability of error Array and Diversity gain Combining Techniques Selection Combining (SC): Path with highest gain used Maximal Ratio Combining (MRC): Paths cophased and summed with optimal weights to maximize SNR SC Performance Analysis Combiner SNR is the maximum of the branch SNRs. CDF easy to obtain (Pip(gi<gthr)), pdf found by differentiating. Pout obtained from CDF. Average Ps typically found numerically Diminishing returns with number of antennas. Can get up to about 20 dB of gain.

Review Continued MRC Performance With MRC, gS=gi for branch SNRs gi Optimal technique to maximize output SNR Yields 20-40 dB performance gains Distribution of gS hard to obtain Standard average BER calculation Hard to obtain in closed form Integral often diverges MGF Approach s s s Cover in HW and ppt, not lecture

Transmit Diversity With channel knowledge, similar to receiver diversity, same array/diversity gain Without channel knowledge, can obtain diversity gain through Alamouti scheme: 2 TX antenna space-time block code (STBC) Works over 2 consecutive symbols Achieves full diversity gain, no array gain Part of various wireless standards, including LTE Hard to generalize to more than 2 TX antennas Alamouti code not covered in lecture/exams

Midterm Review Overview of Wireless Systems Signal Propagation and Channel Models Modulation and Performance Metrics Impact of Channel on Performance Fundamental Capacity Limits Diversity Techniques Main Points

Adaptive Modulation Change modulation relative to fading Parameters to adapt: Constellation size Transmit power Instantaneous BER Symbol time Coding rate/scheme Optimization criterion: Maximize throughput Minimize average power Minimize average BER Only 1-2 degrees of freedom needed for good performance

Variable-Rate Variable-Power MQAM Uncoded Data Bits Delay Point Selector M(g)-QAM Modulator Power: P(g) To Channel g(t) log2 M(g) Bits One of the M(g) Points BSPK 4-QAM 16-QAM Goal: Optimize P(g) and M(g) to maximize R=Elog[M(g)]

Optimization Formulation Adaptive MQAM: Rate for fixed BER Rate and Power Optimization Same maximization as for capacity, except for K=-1.5/ln(5BER).

Optimal Adaptive Scheme gk g Power Adaptation Spectral Efficiency g Equals capacity with effective power loss K=-1.5/ln(5BER).

Spectral Efficiency Can reduce gap by superimposing a trellis code K2 K=-1.5/ln(5BER) Can reduce gap by superimposing a trellis code

Main Points Transmit diversity with channel state information at the TX is same as RX diversity Can obtain diversity gain even without channel information at transmitter via space-time block codes. Adaptive modulation leverages fast fading to improve performance (throughput, BER, etc.) Adaptive MQAM uses capacity-achieving power and rate adaptation, with power penalty K. Comes within 5-6 dB of capacity