Newton’s Laws of Motion

Slides:



Advertisements
Similar presentations
SPH3UW Today’s Agenda Friction What is it?
Advertisements

Newton’s First & Second Law
Physics: Principles with Applications, 6th edition
SPH4U: Lecture 7 Today’s Agenda
FORCE A force is any influence that can change the velocity of a body. Forces can act either through the physical contact of two objects (contact forces:
Physics: Principles with Applications, 6th edition
Forces and Newton’s Laws of Motion
Chapter 4 The Laws of Motion.
Forces and Newton’s Laws of Motion Chapter 4. All objects naturally tend to continue moving in the same direction at the same speed. All objects resist.
Dr. Steve Peterson Physics 1025F Mechanics NEWTON’S LAWS Dr. Steve Peterson
Motion and Force Dynamics
AP Physics Chapter 5 Force and Motion – I.
Kinematics – the study of how things move
Laws of Motion Review.
ISAAC NEWTON AND THE FORCE Dynamics. Kinematics vs Dynamics Kinematics – the study of how stuff move  Velocity, acceleration, displacement, vector analysis.
Chapter 4 Dynamics: Newton’s Laws of Motion
Inclined Plane Problems
 To describe how a force affects the motion of an object.  To interpret and construct free body diagrams.  To recognize Newton's laws of motion in.
Newton’s Laws of Motion
Forces and Newton’s Laws of Motion
Kinematics – the study of how things move Dynamics – the study of why things move Forces (the push or pull on an object) cause things to move Aristotle.
Unit 2 1D Vectors & Newton’s Laws of Motion. A. Vectors and Scalars.
EVERY-DAY FORCES Force of gravity Normal force Force of friction Universal force of gravity.
© 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their.
Newton’s Laws of Motion
Forces and the Laws of Motion Chapter Changes in Motion Objectives  Describe how force affects the motion of an object  Interpret and construct.
SECOND LAW OF MOTION If there is a net force acting on an object, the object will have an acceleration and the object’s velocity will change. Newton's.
Chapter 4 Dynamics: Newton’s Laws of Motion. Units of Chapter 4 Force Newton’s First Law of Motion Mass Newton’s Second Law of Motion Newton’s Third Law.
Chapter 4 Forces and the Laws of Motion. Newton’s First Law An object at rest remains at rest, and an object in motion continues in motion with constant.
Chapter 4 Dynamics: Newton’s Laws of Motion
Chapter 4 Dynamics: Newton’s Laws of Motion. Units of Chapter 4 Force Newton’s First Law of Motion Mass Newton’s Second Law of Motion Newton’s Third Law.
 Isaac Newton  Smart Guy  Liked Apples  Invented Calculus  Came up with 3 laws of motion  Named stuff after himself.
Physics I Honors 1 Happy New Quarter day I sent an arrow into the air and it landed I know not where. But, It was launched at 30 degrees with a velocity.
Forces and Free-Body Diagrams
Dynamics: Newton’s Laws of Motion. Concepts Force Newton’s First Law of Motion Mass Newton’s Second Law of Motion Newton’s Third Law of Motion Weight.
Chapter 4 Forces and Newton’s Laws of Motion. 4.1 The Concepts of Force and Mass A force is a push or a pull. Contact forces arise from physical contact.
Force & Newton’s Laws of Motion. FORCE Act of pulling or pushing Act of pulling or pushing Vector quantity that causes an acceleration when unbalanced.
Remember!!!! Force Vocabulary is due tomorrow
Dynamics: Newton’s Laws of Motion
Dynamics: Newton’s Laws of Motion
Unit 2 1D Vectors & Newton’s Laws of Motion. A. Vectors and Scalars.
The tendency of objects to resist change in their state of motion is called inertia  Inertia is measured quantitatively by the object's mass.  Objects.
Basic Information: Force: A push or pull on an object Forces can cause an object to: Speed up Slow down Change direction Basically, Forces can cause an.
Ch. 5: Using Newton’s Laws: Friction, Circular Motion, Drag Forces
Chapter 5 The Laws of Motion.
Copyright © 2009 Pearson Education, Inc. Chapter 4 Dynamics: Newton’s Laws of Motion.
© 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their.
Dynamics: Newton’s Laws of Motion. Force A force is a push or pull. An object at rest needs a force to get it moving; a moving object needs a force to.
CP Physics Chapter 4 Newton’s Laws Force Force (F) is a push or a pull Measured in Newtons (N) for SI, pounds (lb) in US. (4.45 N = 1 lb) It has magnitude.
Chapter 4 Dynamics: Aim: How can we describe Newton’s Laws of Motion? © 2014 Pearson Education, Inc.
Chapter 4 Dynamics: Newton’s Laws of Motion. Units of Chapter 4 Force Newton’s First Law of Motion Mass Newton’s Second Law of Motion Newton’s Third Law.
Forces and Newton’s Laws of Motion. A force is a push or a pull. Arrows are used to represent forces. The length of the arrow is proportional to the magnitude.
1 Chapter 5 The Laws of Motion. 2 Force Forces are what cause any change in the velocity of an object A force is that which causes an acceleration The.
Physics and Forces Dynamics Newton’s Laws of Motion  Newton's laws are only valid in inertial reference frames:  This excludes rotating and accelerating.
Unit is the NEWTON(N) Is by definition a push or a pull Can exist during physical contact(Tension, Friction, Applied Force) Can exist with NO physical.
Chapter 4 Forces and Newton’s Laws of Motion. Newtonian mechanics Describes motion and interaction of objects Applicable for speeds much slower than the.
Dynamics: Newton’s Laws of Motion
Force is part of an interaction
Dynamics: Newton’s Laws of Motion
Chapter 4 Dynamics: Newton’s Laws of Motion
Physics: Principles with Applications, 6th edition
Dynamics: Newton’s Laws of Motion (Ch. 12)
Forces and Newton’s Laws of Motion
Physics: Principles with Applications, 6th edition
Forces and Newton’s Laws of Motion
Chapter 4 Dynamics: Newton’s Laws of Motion
Dynamics: Newton’s Laws of Motion
Physics: Principles with Applications, 6th edition
Dynamics: Newton’s Laws of Motion
Presentation transcript:

Newton’s Laws of Motion AP Physics B Chapter 4 Notes

Newton’s First Law of Motion Aristotle vs. Galileo Natural State of Motion Galileo Thought Experiment

Newton’s First Law of Motion A force is a push or pull. An object at rest needs a force to get it moving; a moving object needs a force to change its velocity. The magnitude of a force can be measured using a spring scale.

Facts about FORCE Unit is the NEWTON (N)—has direction Physical contact (Tension, Friction, Applied Force) NO physical contact, called FIELD FORCES ( gravitational, electric, etc) DYNAMICS connects force and motion

Newton’s First Law of Motion Every object continues in its state of rest, or of uniform velocity in a straight line, as long as no net force acts on it. Law of Inertia—why? Inertial reference frames vs. noninertial.

Mass versus Weight Mass is the measure of inertia of an object—”A property of matter” (kg) Weight is the force exerted on the object by gravity (N) Mass is constant for a given object, weight can change with g

Newton’s Second Law of Motion First law says a net force causes velocity to change…but Δv = a What is the relationship between F and a? Common sense tells us… The acceleration of an object is directly proportional to the net force acting on it, and is inversely proportional to its mass. The direction of the acceleration is in the direction of the net force acting on the object.

Examples Example 4-2 pg. 76: Estimate the force needed to accelerate a) a 1000 kg car at 0.5g; b) a 200 g apple at the same rate. P11 pg. 98: A race car covers 402m in 6.4s from rest. Assuming constant a, how many g’s does the driver experience? If total mass is 485kg what horizontal force does the road exert on the tires?

Newton’s Third Law of Motion Hammer on a nail and F=ma tells you the nail is accelerated. What happens to the hammer? Newton knew it was not a one-sided exchange…

Newton’s Third Law of Motion Forces come in pairs (or pears?) Objects interacting receive equal treatment Action and reaction forces act on different objects! Whenever one object exerts a force on a second object, the second exerts an equal force in the opposite direction on the first.

Newton’s Third Law--Example Example 4-5 pg. 80: How can the man move the sled when it must be pulling back on him with equal force? Subscript notation: First letter is what the force is acting on and the second letter is the source of the force.

Concept Check A bug splats on the windshield of your car: a) Which experienced a greater force of impact? b) Which experienced greater acceleration? c) Which of Newton’s laws explains this? How does a rocket propel itself in outer space where there is no atmosphere? When you climb up a rope, the first thing you do is pull down on the rope. How do you manage to go up the rope by doing that?

Normal Force and Free Body Diagrams Weight is the force exerted on an object by gravity: An object at rest has no net force acting on it (Newton’s first) so ΣF = ma = 0 (Newton’s second) So what is going on with an object at rest on a table?

Normal Force and Free Body Diagrams Gravity is acting on the bust of our 16th president, yet it is at rest, so there must be another opposing force acting on it. This is called the normal force (FN), and is exactly large enough to balance FG FN acts perpendicular (or normal) to the supporting surface Caution: Weight and normal force are not action-reaction pairs

Normal Force and Free Body Diagrams FBD shows all forces acting on each object in a given system Each force is represented by an arrow: direction and magnitude! Only show forces acting on one object…several drawings may be needed FN T T m1g m2g

Examples Example 4-12 pg. 87: Two boxes, A and B, are connected by a lightweight cord and are resting on smooth (frictionless) surface. The boxes have masses of 12 kg and 10 kg. A horizontal force FP of 40 N is applied to the 10 kg box. Find a) the acceleration of each box, and b) the tension in the cord connecting the boxes. Example 4-13 pg. 88: An elevator (mE = 1150 kg ) and a counterweight (mC = 1000 kg ) are suspended over a pulley by a massless cable. Calculate a) the acceleration of the elevator and b) the tension in the cable. P 14 pg. 98: A 75 kg thief wants to escape from a third-story jail window. His makeshift rope of bed sheets can only support 58 kg. How might the thief escape (quantify the answer)?

Friction and Newton’s Laws On a microscopic level, surfaces are rough—interaction of these surfaces leads to friction The interaction is complex but is simple to model: Ffr = μFN with μ equal to the coefficient of friction—a measure of the stickiness of the two surfaces

Friction and Newton’s Laws When an object is sliding, it is kinetic friction Static friction occurs before an object is moved Coefficients for static friction are higher than for kinetic friction (see Table 4-2, pg. 90)

Examples Example 4-19 pg. 92: A 10 kg box is pulled along a horizontal surface by a force of 40 N applied at a 30º angle. The coefficient of kinetic friction is 0.3. Calculate the acceleration. Example 4-20 pg. 93: Two boxes are connected by a cord running over a pulley. Box A ( m = 5 kg) is on a table with μk = 0.20. Box B (m = 2 kg) hangs freely over the edge of the table. Find the acceleration of the system.

Inclines and Newton’s Laws When an object is on an incline, set a new reference frame with x-axis parallel to the incline and y-axis perpendicular to the incline Draw the FBD as you normally would, but note that the only forces acting on the object are gravity, normal, friction and any applied force Break FG into x- and y-components

Examples Example 4-21 pg. 94: A skier has just begun descending a 30º slope. Assuming the coefficient of kinetic friction is 0.10, calculate a) her acceleration and b) her speed after 4 s. P. 51 pg. 102: A child slides down a slide with a 28º incline, and at the bottom her speed is precisely half what it would have been if the slide had been frictionless. Calculate the coefficient of kinetic friction between the slide and the child.