Part-D1 Priority Queues

Slides:



Advertisements
Similar presentations
© 2004 Goodrich, Tamassia Heaps © 2004 Goodrich, Tamassia Heaps2 Recall Priority Queue ADT (§ 7.1.3) A priority queue stores a collection of.
Advertisements

Heaps1 Part-D2 Heaps Heaps2 Recall Priority Queue ADT (§ 7.1.3) A priority queue stores a collection of entries Each entry is a pair (key, value)
Data Structures Lecture 7 Fang Yu Department of Management Information Systems National Chengchi University Fall 2010.
The Priority Queue Abstract Data Type. Heaps. Adaptable Priority Queue. 2 CPSC 3200 University of Tennessee at Chattanooga – Summer 2013 © 2010 Goodrich,
CSC401 – Analysis of Algorithms Lecture Notes 5 Heaps and Hash Tables Objectives: Introduce Heaps, Heap-sorting, and Heap- construction Analyze the performance.
Priority Queues. Container of elements where each element has an associated key A key is an attribute that can identify rank or weight of an element Examples.
© 2004 Goodrich, Tamassia Priority Queues1 Heaps: Tree-based Implementation of a Priority Queue.
Chapter 8: Priority Queues
© 2004 Goodrich, Tamassia Heaps © 2004 Goodrich, Tamassia Heaps2 Priority Queue Sorting (§ 8.1.4) We can use a priority queue to sort a set.
Priority Queues. Container of elements where each element has an associated key A key is an attribute that can identify rank or weight of an element Examples.
Priority Queues1 Part-D1 Priority Queues. Priority Queues2 Priority Queue ADT (§ 7.1.3) A priority queue stores a collection of entries Each entry is.
Chapter 8: Priority Queues and Heaps Nancy Amato Parasol Lab, Dept. CSE, Texas A&M University Acknowledgement: These slides are adapted from slides provided.
1 Priority Queues CPS212 Gordon College VIP. 2 Introduction to STL Priority Queues Adaptor container - underlying container may be either: – a template.
© 2004 Goodrich, Tamassia Priority Queues1. © 2004 Goodrich, Tamassia Priority Queues2 Priority Queue ADT (§ 7.1.3) A priority queue stores a collection.
Heaps and Priority Queues Priority Queue ADT (§ 2.4.1) A priority queue stores a collection of items An item is a pair (key, element) Main.
Chapter 21 Binary Heap.
Priority Queues & Heaps Chapter 9. Iterable Collection Abstract Collection Queue List Abstract Queue Priority Queue Array List Abstract List Vector Stack.
PRIORITY QUEUES AND HEAPS CS16: Introduction to Data Structures & Algorithms Tuesday, February 24,
1 Heaps A heap is a binary tree. A heap is best implemented in sequential representation (using an array). Two important uses of heaps are: –(i) efficient.
Priority Queues and Heaps. Outline and Reading PriorityQueue ADT (§8.1) Total order relation (§8.1.1) Comparator ADT (§8.1.2) Sorting with a Priority.
Chapter 2.4: Priority Queues and Heaps PriorityQueue ADT (§2.4.1) Total order relation (§2.4.1) Comparator ADT (§2.4.1) Sorting with a priority queue (§2.4.2)
Chapter 2: Basic Data Structures. Spring 2003CS 3152 Basic Data Structures Stacks Queues Vectors, Linked Lists Trees (Including Balanced Trees) Priority.
CS 2468: Assignment 2 (Due Week 9, Tuesday. Drop a hard copy in Mail Box 75 or hand in during the lecture) Use array representation (double a[]) to implement.
1 Heaps A heap is a binary tree. A heap is best implemented in sequential representation (using an array). Two important uses of heaps are: –(i) efficient.
Heaps © 2010 Goodrich, Tamassia. Heaps2 Priority Queue ADT  A priority queue (PQ) stores a collection of entries  Typically, an entry is a.
Priority Queues Last Update: Oct 23, 2014 EECS2011: Priority Queues1.
1 COMP9024: Data Structures and Algorithms Week Seven: Priority Queues Hui Wu Session 1, 2016
Heaps and Priority Queues What is a heap? A heap is a binary tree storing keys at its internal nodes and satisfying the following properties:
Sorting With Priority Queue In-place Extra O(N) space
Priority Queues 5/3/2018 Presentation for use with the textbook Data Structures and Algorithms in Java, 6th edition, by M. T. Goodrich, R. Tamassia, and.
Heaps (8.3) CSE 2011 Winter May 2018.
Priority Queues © 2010 Goodrich, Tamassia Priority Queues 1
Heaps 8/2/2018 Presentation for use with the textbook Data Structures and Algorithms in Java, 6th edition, by M. T. Goodrich, R. Tamassia, and M. H. Goldwasser,
Priority Queues Chuan-Ming Liu
COMP9024: Data Structures and Algorithms
Part-D1 Priority Queues
Heaps © 2010 Goodrich, Tamassia Heaps Heaps
CSCE 3100 Data Structures and Algorithm Analysis
Bohyung Han CSE, POSTECH
Heaps 9/13/2018 3:17 PM Heaps Heaps.
Chapter 2: Basic Data Structures
Heaps and Priority Queues
Chapter 2, Sections 4 and 5 Priority Queues Heaps Dictionaries
Priority Queues and Heaps
Algorithms Sorting-part2.
Heaps and Priority Queues
Priority Queues 4/6/15 Presentation for use with the textbook Data Structures and Algorithms in Java, 6th edition, by M. T. Goodrich, R. Tamassia, and.
Heaps 11/27/ :05 PM Heaps Heaps.
Tree Representation Heap.
Heaps A heap is a binary tree.
Heaps and Priority Queues
© 2013 Goodrich, Tamassia, Goldwasser
Copyright © Aiman Hanna All rights reserved
Heaps 12/4/2018 5:27 AM Heaps /4/2018 5:27 AM Heaps.
Ch. 8 Priority Queues And Heaps
Priority Queues Sell 100 IBM $ $120 Buy 500 $ $118
Heaps and Priority Queues
Heap Sort CSE 2011 Winter January 2019.
Priority Queues Sell 100 IBM $ $120 Buy 500 $ $118
© 2013 Goodrich, Tamassia, Goldwasser
Heaps © 2014 Goodrich, Tamassia, Goldwasser Heaps Heaps
Lecture 9 CS2013.
Heaps and Priority Queues
Priority Queues © 2010 Goodrich, Tamassia Priority Queues
1 Lecture 10 CS2013.
CS210- Lecture 14 July 5, 2005 Agenda Inserting into Heap
The Heap ADT A heap is a complete binary tree where each node’s datum is greater than or equal to the data of all of the nodes in the left and right.
Heaps 9/29/2019 5:43 PM Heaps Heaps.
Heaps.
CS210- Lecture 13 June 28, 2005 Agenda Heaps Complete Binary Tree
Presentation transcript:

Part-D1 Priority Queues 二○一八年十一月十九日 Part-D1 Priority Queues Priority Queues

Priority Queue ADT A priority queue stores a collection of entries Each entry is a pair (key, value) Main methods of the Priority Queue ADT insert(k, x) inserts an entry with key k and value x removeMin() removes and returns the entry with smallest key Additional methods min() returns, but does not remove, an entry with smallest key size(), isEmpty() Applications: Standby flyers Auctions Stock market Priority Queues

Entry ADT An entry in a priority queue is simply a key-value pair Priority queues store entries to allow for efficient insertion and removal based on keys Methods: key(): returns the key for this entry value(): returns the value associated with this entry As a Java interface: /** * Interface for a key-value * pair entry **/ public interface Entry { public Object key(); public Object value(); } Priority Queues

Comparator ADT The primary method of the Comparator ADT: A comparator encapsulates the action of comparing two objects according to a given total order relation A generic priority queue uses an auxiliary comparator The comparator is external to the keys being compared When the priority queue needs to compare two keys, it uses its comparator The primary method of the Comparator ADT: compare(a, b): Returns an integer i such that i < 0 if a < b, i = 0 if a = b, and i > 0 if a > b; an error occurs if a and b cannot be compared. Priority Queues

Priority Queue Sorting We can use a priority queue to sort a set of comparable elements Insert the elements one by one with a series of insert operations Remove the elements in sorted order with a series of removeMin operations The running time of this sorting method depends on the priority queue implementation Algorithm PQ-Sort(S, C) Input sequence S, comparator C for the elements of S Output sequence S sorted in increasing order according to C P  priority queue with comparator C while S.isEmpty () e  S.removeFirst () P.insert (e, 0) while P.isEmpty() e  P.removeMin().key() S.insertLast(e) Priority Queues

Sequence-based Priority Queue Implementation with an unsorted list Performance: insert takes O(1) time since we can insert the item at the beginning or end of the sequence removeMin and min take O(n) time since we have to traverse the entire sequence to find the smallest key Implementation with a sorted list Performance: insert takes O(n) time since we have to find the place where to insert the item removeMin and min take O(1) time, since the smallest key is at the beginning 4 5 2 3 1 1 2 3 4 5 Priority Queues

Selection-Sort Selection-sort is the variation of PQ-sort where the priority queue is implemented with an unsorted list Running time of Selection-sort: Inserting the elements into the priority queue with n insert operations takes O(n) time Removing the elements in sorted order from the priority queue with n removeMin operations takes time proportional to 1 + 2 + …+ n-1 Selection-sort runs in O(n2) time Priority Queues

Selection-Sort Example Sequence S Priority Queue P Input: (7,4,8,2,5,3,9) () Phase 1 (a) (4,8,2,5,3,9) (7) (b) (8,2,5,3,9) (7,4) .. .. .. . . . (g) () (7,4,8,2,5,3,9) Phase 2 (a) (2) (7,4,8,5,3,9) (b) (2,3) (7,4,8,5,9) (c) (2,3,4) (7,8,5,9) (d) (2,3,4,5) (7,8,9) (e) (2,3,4,5,7) (8,9) (f) (2,3,4,5,7,8) (9) (g) (2,3,4,5,7,8,9) () Running time: 1+2+3+…n-1=O(n2). No advantage is shown by using unsorted list. Priority Queues

A full binary without the last few nodes at the bottom on the right. Priority Queues 二○一八年十一月十九日 Heaps A heap is a binary tree storing keys at its nodes and satisfying the following properties: Heap-Order: for every node v other than the root, key(v)  key(parent(v)) Complete Binary Tree: let h be the height of the heap for i = 0, … , h - 1, there are 2i nodes of depth i at depth h - 1, the internal nodes are to the left of the external nodes The last node of a heap is the rightmost node of depth h Root has the smallest key 2 5 6 9 7 A full binary without the last few nodes at the bottom on the right. last node Priority Queues

A CBT of 13 node is the one without nodes 7 and 8. Priority Queues 二○一八年十一月十九日 Complete Binary Trees Once the number of nodes in the complete binary tree is fixed, the tree is fixed. For example, a complete binary tree of 15 node is shown in the slide. A CBT of 14 nodes is the one without node 8. A CBT of 13 node is the one without nodes 7 and 8. 1 2 3 4 5 6 7 8 A binary tree of height 3 has the first p leaves at the bottom for p=1, 2, …, 8=23. Priority Queues

Height of a Heap Theorem: A heap storing n keys has height O(log n) Proof: (we apply the complete binary tree property) Let h be the height of a heap storing n keys Since there are 2i keys at depth i = 0, … , h - 1 and at least one key at depth h, we have n  1 + 2 + 4 + … + 2h-1 + 1=2h. Thus, n  2h , i.e., h  log n depth keys 1 1 2 h-1 2h-1 h 1 Priority Queues

Heaps and Priority Queues We can use a heap to implement a priority queue We store a (key, element) item at each internal node We keep track of the position of the last node For simplicity, we show only the keys in the pictures (2, Sue) (5, Pat) (6, Mark) (9, Jeff) (7, Anna) Priority Queues

Insertion into a Heap Method insertItem of the priority queue ADT corresponds to the insertion of a key k to the heap The insertion algorithm consists of three steps Create the node z (the new last node). Store k at z Put z as the last node in the complete binary tree. Restore the heap-order property, i.e., upheap (discussed next) 2 5 6 z 9 7 insertion node 2 5 6 z 9 7 1 Priority Queues

Upheap After the insertion of a new key k, the heap-order property may be violated Algorithm upheap restores the heap-order property by swapping k along an upward path from the insertion node Upheap terminates when the key k reaches the root or a node whose parent has a key smaller than or equal to k Since a heap has height O(log n), upheap runs in O(log n) time 2 1 5 1 5 2 z z 9 7 6 9 7 6 Priority Queues

Priority Queues 二○一八年十一月十九日 An example of upheap 1 2 2 3 4 5 6 7 2 3 9 10 11 14 15 16 17 2 7 Different entries may have the same key. Thus, a key may appear more than once. Priority Queues

Removal from a Heap Method removeMin of the priority queue ADT corresponds to the removal of the root key from the heap The removal algorithm consists of three steps Replace the root key with the key of the last node w Remove w Restore the heap-order property .e., downheap(discussed next) 2 5 6 w 9 7 last node 7 5 6 w 9 new last node Priority Queues

Downheap After replacing the root key with the key k of the last node, the heap-order property may be violated Algorithm downheap restores the heap-order property by swapping key k along a downward path (always use the child with smaller key) from the root Downheap terminates when key k reaches a leaf or a node whose children have keys greater than or equal to k Since a heap has height O(log n), downheap runs in O(log n) time 7 5 5 6 7 6 9 9 Priority Queues

Priority Queues 二○一八年十一月十九日 An example of downheap 2 17 17 4 2 3 17 4 5 9 6 7 17 9 10 11 14 15 16 Priority Queues

Priority Queue ADT using a heap A priority queue stores a collection of entries Each entry is a pair (key, value) Main methods of the Priority Queue ADT insert(k, x) inserts an entry with key k and value x O(log n) removeMin() removes and returns the entry with smallest key O(log n) Additional methods min() returns, but does not remove, an entry with smallest key O(1) size(), isEmpty() O(1) Running time of Size(): when constructing the heap, we keep the size in a variable. When inserting or removing a node, we update the value of the variable in O(1) time. isEmpty(): takes O(1) time using size(). (if size==0 then …) Priority Queues

Heap-Sort Consider a priority queue with n items implemented by means of a heap the space used is O(n) methods insert and removeMin take O(log n) time methods size, isEmpty, and min take time O(1) time Using a heap-based priority queue, we can sort a sequence of n elements in O(n log n) time The resulting algorithm is called heap-sort Heap-sort is much faster than quadratic sorting algorithms, such as insertion-sort and selection-sort Priority Queues

Vector-based Heap Implementation We can represent a heap with n keys by means of an array of length n + 1 For the node at rank i the left child is at rank 2i the right child is at rank 2i + 1 Links between nodes are not explicitly stored The cell of at rank 0 is not used Operation insert corresponds to inserting at rank n + 1 Operation removeMin corresponds to removing at rank n Yields in-place heap-sort The parent of node at rank i is i/2 2 5 6 9 7 2 5 6 9 7 1 3 4 Priority Queues

Merging Two Heaps We are given two two heaps and a key k 3 2 We are given two two heaps and a key k We create a new heap with the root node storing k and with the two heaps as subtrees We perform downheap to restore the heap-order property 8 5 4 6 7 3 2 8 5 4 6 2 3 4 8 5 7 6 Priority Queues

Bottom-up Heap Construction (§2.4.3) We can construct a heap storing n given keys in using a bottom-up construction with log n phases In phase i, pairs of heaps with 2i -1 keys are merged into heaps with 2i+1-1 keys 2i -1 2i+1-1 Priority Queues

Example 16 15 4 12 6 7 23 20 25 5 11 27 16 15 4 12 6 7 23 20 Priority Queues

Example (contd.) 25 5 11 27 16 15 4 12 6 9 23 20 15 4 6 20 16 25 5 12 11 9 23 27 Priority Queues

Example (contd.) 7 8 15 4 6 20 16 25 5 12 11 9 23 27 4 6 15 5 8 20 16 25 7 12 11 9 23 27 Priority Queues

Example (end) 10 4 6 15 5 8 20 16 25 7 12 11 9 23 27 4 5 6 15 7 8 20 16 25 10 12 11 9 23 27 Priority Queues

Analysis We visualize the worst-case time of a downheap with a proxy path that goes first right and then repeatedly goes left until the bottom of the heap (this path may differ from the actual downheap path) Since each node is traversed by at most two proxy paths, the total number of nodes of the proxy paths is O(n) Thus, bottom-up heap construction runs in O(n) time Bottom-up heap construction is faster than n successive insertions and speeds up the first phase of heap-sort Priority Queues

Part-E Hash Table Priority Queues Priority Queues 二○一八年十一月十九日 This time, it is O.k. Perhaps, I should put O(n) heap construction part into next time. For Hash Table, delete some methods. Introduce ONE method for each issue. My students do not like too many methods at a time. Priority Queues