Individual Particle Reconstruction

Slides:



Advertisements
Similar presentations
1 Individual Particle Reconstruction CHEP07, Victoria, September 6, 2007 Norman Graf (SLAC) Steve Magill (ANL)
Advertisements

CBM Calorimeter System CBM collaboration meeting, October 2008 I.Korolko(ITEP, Moscow)
LC Calorimeter Testbeam Requirements Sufficient data for Energy Flow algorithm development Provide data for calorimeter tracking algorithms  Help setting.
Electromagnetic Showers with the MST Algorithm Niels Meyer The University of Iowa Matthew Charles, Wolfgang Mader, Usha Mallik ILC Workshop, Snowmass August.
Particle Flow Template Modular Particle Flow for the ILC Purity/Efficiency-based PFA PFA Module Reconstruction Jet Reconstruction Stephen Magill Argonne.
Ties Behnke, Vasiliy Morgunov 1SLAC simulation workshop, May 2003 Pflow in SNARK: the next steps Ties Behnke, SLAC and DESY; Vassilly Morgunov, DESY and.
PFA on SiDaug05_np Lei Xia ANL-HEP. PFA outline Calibration of calorimeter –Done –Not tuned for clustering algorithm Clustering algorithm –Done: hit density.
 Track-First E-flow Algorithm  Analog vs. Digital Energy Resolution for Neutral Hadrons  Towards Track/Cal hit matching  Photon Finding  Plans E-flow.
 Performance Goals -> Motivation  Analog/Digital Comparisons  E-flow Algorithm Development  Readout R&D  Summary Optimization of the Hadron Calorimeter.
Individual Particle Reconstruction Norman Graf SLAC April 28, 2005.
LPC Jet/Met meeting 1/12/2006L. Perera1 Jet/Calorimeter Cluster Energy Corrections – Status Goal: To improve the individual jet energy determination based.
1 Andrea Bangert, ATLAS SCT Meeting, Monte Carlo Studies Of Top Quark Pair Production Andrea Bangert, Max Planck Institute of Physics, CSC T6.
1 The CMS Heavy Ion Program Michael Murray Kansas.
PFA Development – Definitions and Preparation 0) Generate some events w/G4 in proper format 1)Check Sampling Fractions ECAL, HCAL separately How? Photons,
Energy Flow Studies Steve Kuhlmann Argonne National Laboratory for Steve Magill, U.S. LC Calorimeter Group.
Energy Flow Studies Steve Kuhlmann Argonne National Laboratory for Steve Magill, Brian Musgrave, Norman Graf, U.S. LC Calorimeter Group.
Scintillator (semi)DHCAL? Vishnu Zutshi for. Introduction Can a scintillator (semi)digital calorimeter work? Cell sizes are necessarily 6-12 cm 2 Can.
1 N. Davidson Calibration with low energy single pions Tau Working Group Meeting 23 rd July 2007.
Track Extrapolation/Shower Reconstruction in a Digital HCAL – ANL Approach Steve Magill ANL 1 st step - Track extrapolation thru Cal – substitute for Cal.
Photon reconstruction and calorimeter software Mikhail Prokudin.
Individual Particle Reconstruction: PFA Development in the US Norman Graf (for M. Charles, L. Xia, S. Magill) LCWS07 June 2, 2007.
Progress with the Development of Energy Flow Algorithms at Argonne José Repond for Steve Kuhlmann and Steve Magill Argonne National Laboratory Linear Collider.
Energy Flow and Jet Calibration Mark Hodgkinson Artemis Meeting 27 September 2007 Contains work by R.Duxfield,P.Hodgson, M.Hodgkinson,D.Tovey.
ALCPG Simulation Status and Plans ECFA LC Workshop, Durham Sep. 2, 2004 Norman Graf (SLAC)
ALCPG Simulation Status and Plans ACFA LC Workshop, Taipei Nov. 10, 2004 Norman Graf (SLAC)
Cluster Finding Comparisons Ron Cassell SLAC. Clustering Studies This report studies clustering in the EM calorimeter, using SLIC simulated ttbar events.
Non-prompt Track Reconstruction with Calorimeter Assisted Tracking Dmitry Onoprienko, Eckhard von Toerne Kansas State University, Bonn University Linear.
Event Reconstruction in SiD02 with a Dual Readout Calorimeter Detector Geometry EM Calibration Cerenkov/Scintillator Correction Jet Reconstruction Performance.
SiD performance for the DBD Jan Strube CERN. Overview Software Preparation (CERN, SLAC) Machine Environment (CERN, SLAC) Tracking Performance (C. Grefe)
PFA Template Concept Performance Mip Track and Interaction Point ID Cluster Pointing Algorithm Single Particle Tests of PFA Algorithms S. Magill ANL.
Development of a Particle Flow Algorithms (PFA) at Argonne Presented by Lei Xia ANL - HEP.
25 sep Reconstruction and Identification of Hadronic Decays of Taus using the CMS Detector Michele Pioppi – CERN On behalf.
Two Density-based Clustering Algorithms L. Xia (ANL) V. Zutshi (NIU)
1 Calorimetry Simulations Norman A. Graf for the SLAC Group January 10, 2003.
Pandora calorimetry and leakage correction Peter Speckmayer 2010/09/011Peter Speckmayer, WG2 meeting.
T RACKING E FFICIENCY FOR & CALORIMETER S EED TRACKING FOR THE CLIC S I D Pooja Saxena, Ph.D. Student Center of Detector & Related Software Technology.
PFAs – A Critical Look Where Does (my) SiD PFA go Wrong? S. R. Magill ANL ALCPG 10/04/07.
Bangalore, India1 Performance of GLD Detector Bangalore March 9 th -13 th, 2006 T.Yoshioka (ICEPP) on behalf of the.
13 July 2005 ACFA8 Gamma Finding procedure for Realistic PFA T.Fujikawa(Tohoku Univ.), M-C. Chang(Tohoku Univ.), K.Fujii(KEK), A.Miyamoto(KEK), S.Yamashita(ICEPP),
Photon reconstruction and matching Prokudin Mikhail.
CALOR April Algorithms for the DØ Calorimeter Sophie Trincaz-Duvoid LPNHE – PARIS VI for the DØ collaboration  Calorimeter short description.
1 D.Chakraborty – VLCW'06 – 2006/07/21 PFA reconstruction with directed tree clustering Dhiman Chakraborty for the NICADD/NIU software group Vancouver.
Particle-flow Algorithms in America Dhiman Chakraborty N. I. Center for Accelerator & Detector Development for the International Conference.
Particle Flow Review Particle Flow for the ILC (Jet) Energy Resolution Goal PFA Confusion Contribution Detector Optimization with PFAs Future Developments.
Ties Behnke: Event Reconstruction 1Arlington LC workshop, Jan 9-11, 2003 Event Reconstruction Event Reconstruction in the BRAHMS simulation framework:
Individual Particle Reconstruction The PFA Approach to Detector Development for the ILC Steve Magill (ANL) Norman Graf, Ron Cassell (SLAC)
Calice Meeting Argonne Muon identification with the hadron calorimeter Nicola D’Ascenzo.
1 S, Fedele, Student Presentations, 2004/08/04S Amazing Title Slide Reworking the CES Cluster Reconstruction Algorithm By: Steve Fedele Advisor: Pavel.
7/13/2005The 8th ACFA Daegu, Korea 1 T.Yoshioka (ICEPP), M-C.Chang(Tohoku), K.Fujii (KEK), T.Fujikawa (Tohoku), A.Miyamoto (KEK), S.Yamashita.
TeV muons: from data handling to new physics phenomena Vladimir Palichik JINR, Dubna NEC’2009 Varna, September 07-14, 2009.
12/20/2006ILC-Sousei Annual KEK1 Particle Flow Algorithm for Full Simulation Study ILC-Sousei Annual KEK Dec. 20 th -22 nd, 2006 Tamaki.
TeV Muon Reconstruction Vladimir Palichik JINR, Dubna NEC’2007 Varna, September 10-17, 2007.
John Marshall, 1 John Marshall, University of Cambridge LCD-WG2, July
Intelligent Norman Graf, Steve Magill, Steve Kuhlmann, Ron Cassell, Tony Johnson, Jeremy McCormick SLAC & ANL CALOR ‘06 June 9, 2006 DesignDetector.
PFA Study with Jupiter Contents : 1. Introduction 2. GLD-PFA
SiD tracking using VXD as a primary tracking device
slicPandora: slic + pandoraPFANew
Simulation Framework Norman Graf SLAC June 10, 2005.
The reconstruction method for GLD PFA
Detector Configuration for Simulation (i)
EFA/DHCal development at NIU
Linear Collider Simulation Tools
Simulating the Silicon Detector
Plans for checking hadronic energy
Argonne National Laboratory
Detector Optimization using Particle Flow Algorithm
Linear Collider Simulation Tools
Steve Magill Steve Kuhlmann ANL/SLAC Motivation
LC Calorimeter Testbeam Requirements
Sheraton Waikiki Hotel
Presentation transcript:

Individual Particle Reconstruction Norman Graf SLAC March 17, 2005

Goal The aim is to reconstruct individual particles in the detector with high efficiency and purity. Recognizing individual showers in the calorimeter is the key to achieving high di-jet mass resolution. High segmentation favored over compensation. Loss of intrinsic calorimeter energy resolution is more than offset by the gain in measuring charged particle momenta.

Calorimeter Segmentation Highly segmented calorimeters constructed of materials which induce compact shower size are necessary. Si-W default for electromagnetic calorimeter. Tungsten also being investigated for HCal more compact design reduces cost of coil Need high segmentation to minimize the number of cells receiving energy deposits from more than one initial particle.

Occupancy Event Display Seems not to be a problem, even in busy events.

Clustering Two clustering algorithms available in current code release “Nearest”-Neighbor, with user-defined domains available in longitudinal and two transverse dimensions. (1,0,0) is simplest MIP-cluster finder. Fixed-Cone algorithm ( , ) fast, seed-based, but iterative centering cluster splitting for overlapping cones. Cluster interface defined, so additional clustering algorithms are easily accommodated.

SimpleClusterBuilder A simple (1,1,1) Nearest-Neighbor clustering algorithm performs quite well in the silicon-tungsten detector.

Track Finding and Fitting Nick Sinev has released standalone pattern recognition code for the 2D Barrel VXD hits. High efficiency, even in presence of backgrounds. Efficient at low momentum. Propagates tracks into Central Tracker to pick up  hits Conformal-mapping pattern recognition also available. Fast, but not yet tuned (97% vs 99+%). Work also ongoing to find MIP stubs in Cal and propagate inwards (Kansas State, Iowa).

Strategy I Begin by finding and fitting tracks. (In following plots, used FastMC to smear tracks to decouple the two tasks, viz. I assume highly efficient track finding.) Cluster the calorimeter cells in in EM, HAD & MUON independently using SimpleClusterBuilder. EM  photons & electrons +muon MIPs +others HAD  hadrons + muon MIPS MUON  muon MIPS (+punchthrough)

Strategy II Propagate tracks through the calorimeters and associate clusters to the track if trajectory intersects calorimeter cell in cluster. Tracks associated to EM clusters and good match between cluster energy & track momentum become electron candidates. Tracks associated with clusters in EM, HAD and MUON become muon candidates. Remainder become pion candidates. Remove clusters from the event list.

Neutral Clusters EM Clusters unassociated with a track are photon candidates. Calculate chi-squared for longitudinal shower shape. Calculate shower width. Clusters passing cuts become photon candidates. Remove photon candidate clusters. Unassociated EM neutral clusters failing photon cut + HAD clusters are clustered using fixed cone algorithm. These become neutron (K0L) candidates.

Single Neutron Event

ReconstructedParticles These ReconstructedParticles (electron, photon, pion, muon, neutron) are added back to the event. Can easily sum up event energy in ZPole events. Width of resulting distribution is direct measure of resolution, since events generated at 91GeV. Run jet-finder on RP four vectors, calculate dijet invariant mass. Make lots of plots matching RP-MC.

Z Pole Event

Preliminary Results: Event Energy

Preliminary Results: Dijet Mass

Status Results shown were done with hep.lcd analysis code. Had hoped to repeat this with org.lcsim. Didn’t quite make it, but fairly close. Expect to finish this example soon and document as a tutorial. Although the distributions peak, and are centered roughly at the correct place, resolutions are somewhat poor. Time to tune and optimize.

Summary Simple example of individual particle reconstruction is available within hep.lcd framework, expect org.lcsim version soon. Few (if any) hardcoded values for either geometries, algorithms, or cuts. These are all determined from the event detector (geometry) or arguments to object constructors (algorithm and cut values). Many places along the analysis chain for improvement.