Volume 2, Issue 2, Pages (February 2018)

Slides:



Advertisements
Similar presentations
Date of download: 10/17/2017 Copyright © ASME. All rights reserved.
Advertisements

Metal-Organic-Framework-Based Materials as Platforms for Renewable Energy and Environmental Applications  Huabin Zhang, Jianwei Nai, Le Yu, Xiong Wen.
Volume 1, Issue 2, Pages (October 2017)
Volume 1, Issue 2, Pages (October 2017)
Volume 1, Issue 2, Pages (October 2017)
Volume 1, Issue 4, Pages (December 2017)
Implantable Solid Electrolyte Interphase in Lithium-Metal Batteries
Volume 3, Issue 2, Pages (August 2017)
Volume 1, Issue 3, Pages (November 2017)
Quan Pang, Xiao Liang, Abhinandan Shyamsunder, Linda F. Nazar  Joule 
3D Porous Carbonaceous Electrodes for Electrocatalytic Applications
Volume 3, Issue 2, Pages (August 2017)
Volume 3, Issue 3, Pages (September 2017)
Volume 3, Issue 5, Pages (November 2017)
Volume 1, Issue 2, Pages (October 2017)
Lithium Metal Extraction from Seawater
Volume 3, Issue 2, Pages (August 2017)
Volume 1, Issue 4, Pages (December 2017)
Zhen Li, Bu Yuan Guan, Jintao Zhang, Xiong Wen (David) Lou  Joule 
Template-Directed Growth of Well-Aligned MOF Arrays and Derived Self-Supporting Electrodes for Water Splitting  Guorui Cai, Wang Zhang, Long Jiao, Shu-Hong.
Lithium Metal Anodes: A Recipe for Protection
Volume 1, Issue 1, Pages (September 2017)
Volume 26, Issue 7, Pages (April 2016)
Volume 1, Issue 4, Pages (December 2017)
Hai-xia Zhong, Yu Zhang, Xin-bo Zhang  Chem 
Wei Wen, Jin-Ming Wu, Yin-Zhu Jiang, Lu-Lu Lai, Jian Song  Chem 
Volume 2, Issue 1, Pages (January 2018)
Volume 4, Issue 2, Pages (February 2018)
Volume 3, Issue 5, Pages (November 2017)
Volume 5, Issue 3, Pages (March 2019)
Volume 1, Issue 2, Pages (October 2017)
Volume 1, Issue 3, Pages (November 2017)
Volume 2, Issue 2, Pages (February 2017)
High-Energy Li Metal Battery with Lithiated Host
Benjamin Scholl, Daniel E. Wilson, David Fitzpatrick  Neuron 
Volume 4, Issue 2, Pages (February 2018)
Volume 2, Issue 3, Pages (March 2018)
Volume 2, Issue 1, Pages (January 2018)
Interphase Engineering Enabled All-Ceramic Lithium Battery
What Limits the Performance of Ta3N5 for Solar Water Splitting?
Volume 4, Issue 2, Pages (February 2018)
Volume 4, Issue 2, Pages (February 2018)
Volume 1, Issue 4, Pages (December 2017)
Volume 1, Issue 2, Pages (October 2017)
Volume 2, Issue 6, Pages (June 2017)
Benjamin Scholl, Daniel E. Wilson, David Fitzpatrick  Neuron 
Volume 1, Issue 4, Pages (December 2017)
Volume 3, Issue 4, Pages (October 2017)
Volume 3, Issue 5, Pages (November 2017)
Reactivity-Guided Interface Design in Na Metal Solid-State Batteries
Volume 1, Issue 3, Pages (November 2017)
Volume 2, Issue 11, Pages (November 2018)
Volume 2, Issue 3, Pages (March 2018)
Lightweight Metallic MgB2 Mediates Polysulfide Redox and Promises High-Energy- Density Lithium-Sulfur Batteries  Quan Pang, Chun Yuen Kwok, Dipan Kundu,
3D Porous Carbonaceous Electrodes for Electrocatalytic Applications
Volume 12, Pages (February 2019)
Volume 11, Pages (January 2019)
Volume 11, Pages (January 2019)
Volume 7, Pages (September 2018)
Volume 2, Issue 4, Pages (April 2018)
Bin Li, Hui-Min Wen, Wei Zhou, Jeff Q. Xu, Banglin Chen  Chem 
Volume 3, Issue 1, Pages (July 2017)
Bending and Puncturing the Influenza Lipid Envelope
Nitrogen Fixation by Ru Single-Atom Electrocatalytic Reduction
Modeling of Mitochondrial Donut Formation
Realizing Formation and Decomposition of Li2O2 on Its Own Surface with a Highly Dispersed Catalyst for High Round-Trip Efficiency Li-O2 Batteries  Li-Na.
Volume 1, Issue 2, Pages (October 2017)
Infrared Light-Driven CO2 Overall Splitting at Room Temperature
by Xue Feng Lu, Le Yu, and Xiong Wen (David) Lou
Room-Temperature Conversion of Methane Becomes True
Presentation transcript:

Volume 2, Issue 2, Pages 337-348 (February 2018) Durable and Efficient Hollow Porous Oxide Spinel Microspheres for Oxygen Reduction  Hao Wang, Ruiping Liu, Yutao Li, Xujie Lü, Qi Wang, Shiqiang Zhao, Kunjie Yuan, Zhiming Cui, Xiang Li, Sen Xin, Ru Zhang, Ming Lei, Zhiqun Lin  Joule  Volume 2, Issue 2, Pages 337-348 (February 2018) DOI: 10.1016/j.joule.2017.11.016 Copyright © 2017 Elsevier Inc. Terms and Conditions

Joule 2018 2, 337-348DOI: (10.1016/j.joule.2017.11.016) Copyright © 2017 Elsevier Inc. Terms and Conditions

Figure 1 Morphologies and Element Distribution of As-Obtained Microspheres (A) TEM images of hollow porous ZnCo2O4 (x = 0). Scale bar, 500 nm. (B) ZnMnCoO4 (x = 1) microspheres. Scale bar, 600 nm. (C–F) Elemental mapping of hollow porous ZnMnCoO4 microspheres: (C) Co, (D) Mn, (E) Zn, and (F) O. Scale bar, 1 μm. Joule 2018 2, 337-348DOI: (10.1016/j.joule.2017.11.016) Copyright © 2017 Elsevier Inc. Terms and Conditions

Figure 2 XRD Pattern and XPS of the As-Obtained Microspheres (A) XRD patterns of as-prepared hollow porous ZnMnxCo2−xO4 microspheres and commercially available Co3O4 powder. The standard XRD profiles of ZnMn2O4 (JCPDS no. 77-0470) and Co3O4 (JCPDS no. 74-2120) are shown in pink and green, respectively. (B) Rietveld analysis of the synchrotron XRD of ZnMnCoO4 (open circles, experimental measurement; red line, fitted profile). The crystal structure of spinel ZnMnCoO4 is shown as an inset. (C and D) XPS spectra of (C) Co and (D) Mn in hollow porous ZnMnCoO4 microspheres. Joule 2018 2, 337-348DOI: (10.1016/j.joule.2017.11.016) Copyright © 2017 Elsevier Inc. Terms and Conditions

Figure 3 The ORR Performances of the As-Obtained Samples (A) ORR polarization curves of hollow porous ZnMnxCo2−xO4 microspheres with different value of x, solid Co3O4 powder, and the Pt/C powder as catalysts in an O2-saturated 0.1 M KOH solution stirred at 1,600 rpm. (B) Comparison of the ORR polarization curves among the ZnCo2O4, ZnMnCoO4, and Pt/C catalysts in an O2-saturated 0.1 M KOH solution stirred at 1,600 rpm. (C) The Tafel slope of ZnMnxCo2−xO4, Co3O4 powder and Pt/C catalysts. (D) The chronoamperometric curves of ZnCo2O4 and ZnMnCoO4 catalysts and Pt/C in an O2-saturated 0.1 M KOH electrolyte at the fixed voltage of 0.6 V stirred at 1,600 rpm. Joule 2018 2, 337-348DOI: (10.1016/j.joule.2017.11.016) Copyright © 2017 Elsevier Inc. Terms and Conditions

Figure 4 The Exploration of ORR Mechanism for ZnMnxCo2-xO4 (A and B) Magnetic susceptibility of hollow porous (A) ZnCo2O4 and (B) ZnMnCoO4 microspheres. (C) The proposed ORR process occurring on the surface of Co3+ ions. (D) The relationship between the ORR activity (i.e., onset potential) of a series of catalysts and the B3+-O bond length within the spinel oxide catalysts (B = Co/Mn). Joule 2018 2, 337-348DOI: (10.1016/j.joule.2017.11.016) Copyright © 2017 Elsevier Inc. Terms and Conditions

Figure 5 The DFT Calculations for Correlating the ORR Activity with the Spinel Structure of Crafted ZnMnxCo2−xO4 Catalysts (i.e., ZnCo2O4 at x = 0 and ZnMnCoO4 at x = 1) (A and B) Optimized atomic structures for the main process of an ORR: (A) ZnCo2O4 and (B) ZnMnCoO4. The red circles and gray circles represent O atom and Zn atom, respectively. The blue circle refers to Co atom in (A) and represents B atom (i.e., 50% Mn and 50% Co atoms) in (B). Joule 2018 2, 337-348DOI: (10.1016/j.joule.2017.11.016) Copyright © 2017 Elsevier Inc. Terms and Conditions