RNA as Viral Genetic Material

Slides:



Advertisements
Similar presentations
Viruses: A Borrowed Life
Advertisements

Chapter 19 Viruses.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
Viruses: a kind of “borrowed life” HIV infected T-cell.
Chapter 19.1 & 19.3: Genetics of Viruses and Bacteria
Animal Viruses Because viruses are lifeless partials, their spread depends on other agents. A ( ) is an intermediate host that transfers a pathogen.
Chapter 19 Viruses.
Chapter 19: viruses.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
VIRUSES CHAPTER 19.
If it is not alive, We can’t kill it -- We can only wish to contain it!
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
Chapter 19~Viruses.
Objective: Viruses. Fig RESULTS 12 3 Extracted sap from tobacco plant with tobacco mosaic disease Passed sap through a porcelain filter known to.
Chapter 19 Viruses. Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings Overview: A Borrowed Life Viruses called bacteriophages.
Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings.
Viruses Gene Regulation results in differential Gene Expression, leading to cell Specialization.
Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings Overview: A Borrowed Life Viruses lead “a kind of borrowed life” between.
LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert.
Overview: A Borrowed Life Viruses called bacteriophages can infect and set in motion a genetic takeover of bacteria, such as Escherichia coli Viruses lead.
Fig µm Chapter 19. Fig RESULTS 12 3 Extracted sap from tobacco plant with tobacco mosaic disease Passed sap through a porcelain filter.
Virus es Big Idea 3: Living systems store, retrieve, transmit, and respond to info essential to life processes.
Viruses In 2009, a general outbreak (epidemic) of a flu- like illness first appeared in Mexico and the United States – Caused by an influenza virus H1N1.
Fig µm Chapter 19 - Viruses. Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings Overview: A Borrowed Life Viruses.
© 2014 Pearson Education, Inc. A Borrowed Life  A virus is an infectious particle consisting of genes packaged in a protein coat  Viruses are much simpler.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
Chapter 19 Viruses. Overview Viruses called bacteriophages can infect and set in motion a genetic takeover of bacteria, such as Escherichia coli Viruses.
Chapter 19~Viruses.
Chapter 19 Viruses.
Chapter 19: Viruses.
Chapter 19 Viruses.
Chapter 19 Viruses.
Chapter 19 Viruses.
Chapter 19 Viruses.
19 Viruses Chapter 19 - Viruses
Fig Figure 19.1 Are the tiny viruses infecting this E. coli cell alive? 0.5 µm.
Chapter 19 Viruses.
Overview: A Borrowed Life
Chapter 19~Viruses.
A Borrowed Life A virus is an infectious particle consisting of genes packaged in a protein coat Viruses are much simpler in structure than even prokaryotic.
Chapter 19 Viruses.
Chapter 19 Viruses.
Chapter 19 Viruses.
A Borrowed Life Viruses called bacteriophages can infect and set in motion a genetic takeover of bacteria, such as Escherichia coli Viruses lead “a kind.
Chapter 19 Viruses.
Overview: A Borrowed Life
17 Viruses.
TSWBAT describe the basic structure of a virus.
Chapter 19 Viruses.
Chapter 19 Viruses.
10:22 AM Chapter 19 Viruses.
Chapter 19 Viruses VIRUS Entry and uncoating DNA Capsid Transcription
Chapter 19 Viruses.
Viruses Ch 18 Big Idea 3: Living systems store, retrieve, transmit, and respond to info essential to life processes.
Chapter 19 Viruses.
Chapter 19 Viruses.
Chapter 19 Viruses.
Overview: A Borrowed Life
Virus Structure and Method of Invasion
Chapter 19 Viruses.
Fig Chapter 19: VIRUS Figure 19.1 Are the tiny viruses infecting this E. coli cell alive? 0.5 µm.
Chapter 19 Viruses.
Gene Regulation results in differential Gene Expression, leading to cell Specialization Viruses
Chapter 19 Viruses.
Chapter 19 Viruses.
Chapter 19 Viruses.
Chapter 19 Viruses.
Chapter 19 Viruses.
Chapter 19 Viruses.
Chapter 19 Viruses.
Presentation transcript:

RNA as Viral Genetic Material The broadest variety of RNA genomes is found in viruses that infect animals Retroviruses use reverse transcriptase to copy their RNA genome into DNA HIV (human immunodeficiency virus) is the retrovirus that causes AIDS (acquired immunodeficiency syndrome)

Fig. 19-8 Glycoprotein Viral envelope Capsid RNA (two identical strands) Reverse transcriptase HIV Membrane of white blood cell HIV HOST CELL Reverse transcriptase Viral RNA RNA-DNA hybrid 0.25 µm HIV entering a cell DNA NUCLEUS Provirus Chromosomal DNA Figure 19.8 The reproductive cycle of HIV, the retrovirus that causes AIDS RNA genome for the next viral generation mRNA New virus New HIV leaving a cell

Viral envelope Glycoprotein Capsid RNA (two identical strands) Reverse Fig. 19-8a Glycoprotein Viral envelope Capsid RNA (two identical strands) Reverse transcriptase HOST CELL HIV Reverse transcriptase Viral RNA RNA-DNA hybrid DNA NUCLEUS Provirus Chromosomal DNA RNA genome for the next viral generation Figure 19.8 The reproductive cycle of HIV, the retrovirus that causes AIDS mRNA New virus

Membrane of white blood cell HIV HIV entering a cell Fig. 19-8b Membrane of white blood cell HIV Figure 19.8 The reproductive cycle of HIV, the retrovirus that causes AIDS 0.25 µm HIV entering a cell New HIV leaving a cell

Animation: HIV Reproductive Cycle The viral DNA that is integrated into the host genome is called a provirus Unlike a prophage, a provirus remains a permanent resident of the host cell The host’s RNA polymerase transcribes the proviral DNA into RNA molecules The RNA molecules function both as mRNA for synthesis of viral proteins and as genomes for new virus particles released from the cell Animation: HIV Reproductive Cycle

Evolution of Viruses Viruses do not fit our definition of living organisms Since viruses can reproduce only within cells, they probably evolved as bits of cellular nucleic acid Candidates for the source of viral genomes are plasmids, circular DNA in bacteria and yeasts, and transposons, small mobile DNA segments Plasmids, transposons, and viruses are all mobile genetic elements

Mimivirus, a double-stranded DNA virus, is the largest virus yet discovered There is controversy about whether this virus evolved before or after cells

Concept 19.3: Viruses, viroids, and prions are formidable pathogens in animals and plants Diseases caused by viral infections affect humans, agricultural crops, and livestock worldwide Smaller, less complex entities called viroids and prions also cause disease in plants and animals, respectively

Viral Diseases in Animals Viruses may damage or kill cells by causing the release of hydrolytic enzymes from lysosomes Some viruses cause infected cells to produce toxins that lead to disease symptoms Others have envelope proteins that are toxic

Vaccines are harmless derivatives of pathogenic microbes that stimulate the immune system to mount defenses against the actual pathogen Vaccines can prevent certain viral illnesses Viral infections cannot be treated by antibiotics Antiviral drugs can help to treat, though not cure, viral infections

Emerging Viruses Emerging viruses are those that appear suddenly or suddenly come to the attention of scientists Severe acute respiratory syndrome (SARS) recently appeared in China Outbreaks of “new” viral diseases in humans are usually caused by existing viruses that expand their host territory

Flu epidemics are caused by new strains of influenza virus to which people have little immunity Viral diseases in a small isolated population can emerge and become global New viral diseases can emerge when viruses spread from animals to humans Viral strains that jump species can exchange genetic information with other viruses to which humans have no immunity

These strains can cause pandemics, global epidemics The “avian flu” is a virus that recently appeared in humans and originated in wild birds

(a) The 1918 flu pandemic (b) Influenza A H5N1 virus Fig. 19-9 (a) The 1918 flu pandemic 0.5 µm Figure 19.9 Influenza in humans and other animals For the Discovery Video Emerging Diseases, go to Animation and Video Files. (b) Influenza A H5N1 virus (c) Vaccinating ducks

(a) The 1918 flu pandemic Fig. 19-9a Figure 19.9 Influenza in humans and other animals (a) The 1918 flu pandemic

(b) Influenza A H5N1 virus 0.5 µm Fig. 19-9b Figure 19.9 Influenza in humans and other animals (b) Influenza A H5N1 virus

(c) Vaccinating ducks Fig. 19-9c Figure 19.9 Influenza in humans and other animals (c) Vaccinating ducks

Viral Diseases in Plants More than 2,000 types of viral diseases of plants are known and cause spots on leaves and fruits, stunted growth, and damaged flowers or roots Most plant viruses have an RNA genome

Fig. 19-10 Figure 19.10 Viral infection of plants

Fig. 19-10a Figure 19.10 Viral infection of plants

Fig. 19-10b Figure 19.10 Viral infection of plants

Fig. 19-10c Figure 19.10 Viral infection of plants

Plant viruses spread disease in two major modes: Horizontal transmission, entering through damaged cell walls Vertical transmission, inheriting the virus from a parent

Viroids and Prions: The Simplest Infectious Agents Viroids are circular RNA molecules that infect plants and disrupt their growth Prions are slow-acting, virtually indestructible infectious proteins that cause brain diseases in mammals Prions propagate by converting normal proteins into the prion version Scrapie in sheep, mad cow disease, and Creutzfeldt-Jakob disease in humans are all caused by prions

Original Prion prion Aggregates of prions New prion Normal protein Fig. 19-11 Original prion Prion Aggregates of prions New prion Normal protein Figure 19.11 Model for how prions propagate

host cell and injects its DNA Phage DNA Fig. 19-UN1 The phage attaches to a host cell and injects its DNA Phage DNA Bacterial chromosome Prophage Lytic cycle Lysogenic cycle Virulent or temperate phage Destruction of host DNA Production of new phages Lysis of host cell causes release of progeny phages Temperate phage only Genome integrates into bacterial chromosome as prophage, which (1) is replicated and passed on to daughter cells and (2) can be induced to leave the chromosome and initiate a lytic cycle

Fig. 19-UN2 A B Number of bacteria Number of viruses Time Time

Fig. 19-UN3