Doc.: IEEE 802.11-09/1216r1 Submission November 2009 BroadcomSlide 1 Internet Traffic Modeling Date: 2009-11-17 Authors: NameAffiliationsAddressPhoneEmail.

Slides:



Advertisements
Similar presentations
Internet Measurement Conference 2003 Source-Level IP Packet Bursts: Causes and Effects Hao Jiang Constantinos Dovrolis (hjiang,
Advertisements

Research Directions Mark Crovella Boston University Computer Science.
Estimation and identification of long-range dependence in Internet traffic Thomas Karagiannis University of California,
Connection-level Analysis and Modeling of Network Traffic understanding the cause of bursts control and improve performance detect changes of network state.
Copyright © 2005 Department of Computer Science CPSC 641 Winter Self-Similarity in WAN Traffic A subsequent paper established the presence of network.
Copyright © 2005 Department of Computer Science CPSC 641 Winter Self-Similar Network Traffic The original paper on network traffic self-similarity.
Doc.: IEEE /0587r0 Submission May 2009 Vinko Erceg, BroadcomSlide 1 40MHz BT Over the Air Demonstration Date: Authors:
Doc.: IEEE /1144r1 Submission W.Carney et al (Sony, Ericsson) Slide 1 Simplified Traffic Model Based On Aggregated Network Statistics Date:
Network and Service Assurance Laboratory Analysis of self-similar Traffic Using Multiplexer & Demultiplexer Loaded with Heterogeneous ON/OFF Sources Huai.
2014 Examples of Traffic. Video Video Traffic (High Definition) –30 frames per second –Frame format: 1920x1080 pixels –24 bits per pixel  Required rate:
Computer Science Generating Streaming Access Workload for Performance Evaluation Shudong Jin 3nd Year Ph.D. Student (Advisor: Azer Bestavros)
2  Something “feels the same” regardless of scale 4 What is that???
1 Self-Similar Wide Area Network Traffic Carey Williamson University of Calgary.
1 Self-Similar Ethernet LAN Traffic Carey Williamson University of Calgary.
CMPT 855Module Network Traffic Self-Similarity Carey Williamson Department of Computer Science University of Saskatchewan.
On the Self-Similar Nature of Ethernet Traffic - Leland, et. Al Presented by Sumitra Ganesh.
October 14, 2002MASCOTS Workload Characterization in Web Caching Hierarchies Guangwei Bai Carey Williamson Department of Computer Science University.
On the Constancy of Internet Path Properties Yin Zhang, Nick Duffield AT&T Labs Vern Paxson, Scott Shenker ACIRI Internet Measurement Workshop 2001 Presented.
A Hierarchical Characterization of a Live Streaming Media Workload E. Veloso, V. Almeida W. Meira, A. Bestavros, S. Jin Proceedings of Internet Measurement.
Network Traffic Measurement and Modeling CSCI 780, Fall 2005.
Probability By Zhichun Li.
A Nonstationary Poisson View of Internet Traffic T. Karagiannis, M. Molle, M. Faloutsos University of California, Riverside A. Broido University of California,
Self-Similarity in Network Traffic Kevin Henkener 5/29/2002.
1 Interesting Links
Variance of Aggregated Web Traffic Robert Morris MIT Laboratory for Computer Science IEEE INFOCOM 2000’
CSE 561 – Traffic Models David Wetherall Spring 2000.
Origins of Long Range Dependence Myths and Legends Aleksandar Kuzmanovic 01/08/2001.
Long Range Dependent Traffic and Leaky Buckets CS215-winter ’01 Demetrios Laios 3/22/2001.
Self-Similar through High-Variability: Statistical Analysis of Ethernet LAN Traffic at the Source Level Walter Willinger, Murad S. Taqqu, Robert Sherman,
CS 6401 Network Traffic Characteristics Outline Motivation Self-similarity Ethernet traffic WAN traffic Web traffic.
Internet Traffic Modeling Poisson Model vs. Self-Similar Model By Srividhya Chandrasekaran Dept of CS University of Houston.
Self-Similar Traffic COMP5416 Advanced Network Technologies.
Self-Similarity of Network Traffic Presented by Wei Lu Supervised by Niclas Meier 05/
1 Chapters 9 Self-SimilarTraffic. Chapter 9 – Self-Similar Traffic 2 Introduction- Motivation Validity of the queuing models we have studied depends on.
Panel Topic: After Long Range Dependency (LRD) discoveries, what are the lessons learned so far to provide QoS for Internet advanced applications David.
References for M/G/1 Input Process
Network Traffic Modeling Punit Shah CSE581 Internet Technologies OGI, OHSU 2002, March 6.
Traffic Modeling.
IEEE Presentation Submission Template (Rev. 9) Document Number:
1 FARIMA(p,d,q) Model and Application n FARIMA Models -- fractional autoregressive integrated moving average n Generating FARIMA Processes n Traffic Modeling.
Hung X. Nguyen and Matthew Roughan The University of Adelaide, Australia SAIL: Statistically Accurate Internet Loss Measurements.
Queueing Theory What is a queue? Examples of queues: Grocery store checkout Fast food (McDonalds – vs- Wendy’s) Hospital Emergency rooms Machines waiting.
COMPSAC'14 - N. Larrieu /07/ How to generate realistic network traffic? Antoine VARET and Nicolas LARRIEU COMPSAC – Vasteras – July the 23.
1 Chapters 8 Overview of Queuing Analysis. Chapter 8 Overview of Queuing Analysis 2 Projected vs. Actual Response Time.
1 Self Similar Traffic. 2 Self Similarity The idea is that something looks the same when viewed from different degrees of “magnification” or different.
A Nonstationary Poisson View of Internet Traffic Thomas Karagiannis joint work with Mart Molle, Michalis Faloutsos, Andre Broido.
Burst Metric In packet-based networks Initial Considerations for IPPM burst metric Tuesday, March 21, 2006.
Doc.: IEEE /1317r0 Submission December 2009 Vinko Erceg, BroadcomSlide 1 Internet Traffic Modeling Date: Authors: NameAffiliationsAddressPhone .
Measurement in the Internet Measurement in the Internet Paul Barford University of Wisconsin - Madison Spring, 2001.
정하경 MMLAB Fundamentals of Internet Measurement: a Tutorial Nevil Brownlee, Chris Lossley, “Fundamentals of Internet Measurement: a Tutorial,” CMG journal.
Risk Analysis Workshop April 14, 2004 HT, LRD and MF in teletraffic1 Heavy tails, long memory and multifractals in teletraffic modelling István Maricza.
1 CS 268: Lecture 14 Internet Measurements Scott Shenker and Ion Stoica Computer Science Division Department of Electrical Engineering and Computer Sciences.
1 Internet Traffic Measurement and Modeling Carey Williamson Department of Computer Science University of Calgary.
Notices of the AMS, September Internet traffic Standard Poisson models don’t capture long-range correlations. Poisson Measured “bursty” on all time.
Ó 1998 Menascé & Almeida. All Rights Reserved.1 Part VIII Web Performance Modeling (Book, Chapter 10)
1 Interesting Links. On the Self-Similar Nature of Ethernet Traffic Will E. Leland, Walter Willinger and Daniel V. Wilson BELLCORE Murad S. Taqqu BU Analysis.
Queuing Theory and Traffic Analysis
Empirically Characterizing the Buffer Behaviour of Real Devices
Internet Traffic Modeling
Interesting Links.
Minimal Envelopes.
Evaluation of Load Balancing Algorithms and Internet Traffic Modeling for Performance Analysis By Arthur L. Blais.
Notices of the AMS, September 1998
Self-similar Distributions
Mark E. Crovella and Azer Bestavros Computer Science Dept,
Presented by Chun Zhang 2/14/2003
Network Traffic Modeling
IEEE Presentation Submission Template (Rev. 9) Document Number:
CPSC 641: Network Traffic Self-Similarity
Queueing Problem The performance of network systems rely on different delays. Propagation/processing/transmission/queueing delays Which delay is affected.
Presentation transcript:

doc.: IEEE /1216r1 Submission November 2009 BroadcomSlide 1 Internet Traffic Modeling Date: Authors: NameAffiliationsAddressPhone Sai NandagopalanBroadcomSan Diego Vinko ErcegBroadcomSan Diego858

doc.: IEEE /1216r1 Submission November 2009 BroadcomSlide 2 Why Model Internet Traffic? Why model traffic? –The traffic model is the key for determining the performance of the system. The more accurate is the traffic model the better is the system quantified in terms of its performance. –Traffic model in the evaluation methodology document should focus on capturing the accents of the application which posts special demand on the system performance. –In the traffic model case, the long rang dependency (LRD) is the key characteristic that needs to be captured, because high burstiness resulting from LRD posts high demand on both transport and buffering capability in the system. System Impact of Traffic Modeling –Network performance degrades gradually with increasing LRD (self- similarity). –The more self-similar the traffic, the slower the queue length decays. –Aggregating streams of self-similar traffic typically intensifies the self- similarity ("burstiness") rather than smoothing it. –The bursty behaviour exacerbates the clustering phenomena and degrades network performance. –QoS depends on coping with traffic peaks - video delay bound may be exceeded.

doc.: IEEE /1216r1 Submission November 2009 BroadcomSlide 3 The Packet Count From Measurements by Bellcore In 1989, Leland and Wilson begin taking high resolution traffic traces at Bellcore –Ethernet traffic from a large research lab –100 sec time stamps –Packet length, status, 60 bytes of data –Mostly IP traffic (a little NFS) –Four data sets over three year period –Over 100 million packets in traces –Traces considered representative of normal use A Poisson process –When observed on a fine time scale traffic will appear bursty –When aggregated on a coarse time scale traffic will flatten (smooth) to white noise A Self-Similar (fractal) process –When aggregated over wide range of time scales traffic will maintain its bursty characteristic

doc.: IEEE /1216r1 Submission November 2009 BroadcomSlide 4 Self-similarity manifests itself in several equivalent fashions: –Slowly decaying variance –Long range dependence –Non-degenerate autocorrelations –Hurst effect Self-similar processes are the simplest way to model processes with long- range dependence – correlations that persist (do not degenerate) across large time scales The autocorrelation function r(k) of a process (statistical measure of the relationship, if any, between a random variable and itself, at different time lags) with long-range dependence is not summable: – r(k) = inf. – r(k) k - as k inf. for 0 < < 1 Autocorrelation function follows a power law Slower decay than exponential process –Power spectrum is hyperbolic rising to inf. at freq. 0 –If r(k) < inf. then there is a short-range dependence Hurst Parameter –Related to the autocorrelation lag by H=1- /2 Self-similarity: Definition and Manifestations

doc.: IEEE /1216r1 Submission November 2009 BroadcomSlide 5 Analysis of Different Traffic Ethernet Traffic [LT 94]: –Analysis of traffic logs from perspective of packets/time unit found H to be between 0.8 and Aggregations over many orders of magnitude Effects seem to increase over time Initial looks at external traffic pointed to similar behavior TCP Traffic [PF 95]: –Dominated by diurnal traffic cycle –A simple statistical test was developed to assess accuracy of Poisson assumption Exponential distribution of interarrivals Independence of interarrivals –TELNET and FTP connection interarrivals are well modeled by a Poisson process Evaluation over several hour and minutes periods WWW Traffic [CB 97]: –Crovella and Bestavros [CB 97] analyze WWW logs collected at clients over a 1.5 month period –H was found to be between 0.7 and 0.8

doc.: IEEE /1216r1 Submission November 2009 BroadcomSlide 6 Generating Self Similar Traffic to Model Internet Traffic in TGad (1) Traditional traffic models: finite variance ON/OFF source models –Superposition of such sources behaves like white noise, with only short range correlations Lengths of ON and OFF periods are iid positive random variables, U k Suppose that U has a hyperbolic tail distribution, Property (1) is the infinite variance syndrome or the Noah Effect. 2 implies E(U 2 ) = > 1 ensures that E(U) <, and that S 0 is not infinite

doc.: IEEE /1216r1 Submission November 2009 BroadcomSlide 7 Generating Self Similar Traffic to Model Internet Traffic in TGad (2) Consider a set M traffic sources which are typical ON/OFF sources –Let the value of M be 20 –The distribution of ON and OFF times are heavy tailed 1 2 Ex: Hyperexponential or Pareto or Weibull distribution –The aggregation of these processes leads to a self-similar process H = (3 - min 1 2 )/2 Choose the value of according to the desired H as shown above

doc.: IEEE /1216r1 Submission November 2009 BroadcomSlide 8 Graphical Tests for Self-Similarity How to measure self similarity? Variance-time plots –Relies on slowly decaying variance of self-similar series –The variance of X (m) is plotted versus m on log-log plot –Slope (- greater than –1 is indicative of SS R/S plots –Relies on rescaled range (R/S) statistic growing like a power law with H as a function of number of points n plotted. –The plot of R/S versus n on log-log has slope which estimates H

doc.: IEEE /1216r1 Submission November 2009 BroadcomSlide 9 References [LT 94] W. Leland, M. Taqqu, W. Willinger, D. Wilson, On the Self-Similar Nature of Ethernet Traffic, IEEE/ACM TON, –Baker Award winner [PF 95] V. Paxson, S. Floyd, Wide-Area Traffic: The Failure of Poisson Modeling, IEEE/ACM TON, [CB 97] M. Crovella, A. Bestavros, Self-Similarity in World Wide Web Traffic: Evidence and Possible Causes, IEEE/ACM TON, A Nonstationary Poisson view of Internet Traffic; TKaragiannis, M.Molle, M.Falautsos, A.Broido; Infocom in Wide-Area Traffic: The Failure of Poisson Modeling; Vern Paxson and Sally Floyd; University of California, Berkeley Mathematical Modeling of the internet; F.Kelly, Statistical Laboratory, Univ of Cambridge. Internet Traffic modeling: Markovian Approach to self similarity traffic and prediction of Loss Probability for Finite Queues; S.Kasahara; IEICE Trans Communications, 2001