STRESS TRANSFORMATION

Slides:



Advertisements
Similar presentations
Aerospace Structures and Materials Lecture 22: Laminate Design.
Advertisements

Mechanics of Composite Materials
CHAPTER 4 MACROMECHANICAL ANALYSIS OF LAMINATES
Composites Design and Analysis Stress-Strain Relationship Prof Zaffar M. Khan Institute of Space Technology Islamabad.
Micromechanics Macromechanics Fibers Lamina Laminate Structure Matrix.
PLANE STRAIN TRANSFORMATION
M. A. Farjoo.  The stiffness can be defined by appropriate stress – strain relations.  The components of any engineering constant can be expressed in.
Mechanics of Materials – MAE 243 (Section 002) Spring 2008 Dr. Konstantinos A. Sierros.
Experimental stress Analysis Introduction. Main Course Topics Review of Concepts Failure Theories Generalized Hook’s law – Elasticity Stress-Strain Response.
MACROMECHANICS Ahmet Erkliğ.
The linear algebra of Canadarm
Chapter 4 Macromechanical Analysis of a Laminate Laminate Analysis: Example Dr. Autar Kaw Department of Mechanical Engineering University of South Florida,
Section 10.1 Polar Coordinates.
Elastic Properties of Solids, Part III Topics Discussed in Kittel, Ch. 3, pages Another Lecture Found on the Internet!
Part7: Geometric Transformations
Background on Composite Property Estimation and Measurement
Internal stress measurement using XRD
EML 4230 Introduction to Composite Materials
Chapter 2 Macromechanical Analysis of a Lamina 2D Stiffness and Compliance Matrix for Unidirectional Lamina Dr. Autar Kaw Department of Mechanical Engineering.
Two-Dimensional Geometric Transformations A two dimensional transformation is any operation on a point in space (x, y) that maps that point's coordinates.
Section 9.2 Adding and Subtracting Matrices Objective: To add and subtract matrices.
LESSON 5-1 I can draw reflected images. I can recognize and draw lines of symmetry.
January 19, y X Z Translations Objects are usually defined relative to their own coordinate system. We can translate points in space to new positions.
STRENGHT, LAMINA FAILURE CRITERIA
EML 4230 Introduction to Composite Materials
Coordinate Systems and Transformations
Transformation methods - Examples
THERMAL STRESSES IN COMPOSITE MATERIALS Zdeněk Padovec.
ΜΕΤΑΣΥΛΛΕΚΤΙΚΗ ΦΥΣΙΟΛΟΓΙΑ ΕΡΓΑΣΤΗΡΙΟ 3. Μετασυλλεκτική Εργ3-Λιοσάτου Γ.2 ΒΙΟΛΟΓΙΚΟΙ ΠΑΡΑΓΟΝΤΕΣ ΠΟΥ ΕΠΗΡΕΑΖΟΥΝ ΤΗ ΦΘΟΡΑ ΤΩΝ ΟΠΩΡΟΚΗΠΕΥΤΙΚΩΝ Αναπνοή Η λειτουργία.
Pendahuluan Material Komposit
EML 4230 Introduction to Composite Materials
Evaluating Angles.
15 unknowns.
Special Angle Values.
Represented by Dr. Shorouk Ossama
Warm Up Find each product, if possible. 1. AB 2. BA.
CLASSIC LAMINATION THEORY Zdeněk Padovec
3D Stress Transformation
Graphs of Sine and Cosine Functions
Lecture 6: Elastic Deformation of laminates
Review for Final Exam Basic knowledge of vector & index notation, matrix-tensor theory, coordinate transformation, principal value problems, vector calculus.
Trigonometric Function: The Unit circle
Sum and Difference Identities for the Sin Function
unidirectional lamina
Transformations in 3 Dimensions CS /28/2018 Dr. Mark L. Hornick
FP1 Matrices Transformations
Find f x and f y. f ( x, y ) = x 5 + y 5 + x 5y
Find sin 2x, cos 2x, and tan 2x from the given information: {image} Select the correct answer:
Unit Circle 1 (0,0) Center: Radius: -1.
اثرات گرمايش جهاني تغييرات آب و هوا، تأثيرات عميق و شديدي بر بسياري از عوامل اساسي موثر بر سلامت از جمله : آب، غذا، هوا و محيط زيست دارد كه اين مورد خود.
Graphing Trigonometric Functions
Review for Mid-Term Exam
التعامل مع ضغوطات العمل إعداد وتقديم إقبال المطيري
CLASSIC LAMINATION THEORY Zdeněk Padovec
Graphical design for specified laminate strain limits
Half-Angle Identities
Concepts of stress and strain
Derivation of the 2D Rotation Matrix
Trig. Ratios in a Coordinate System
5.1 Oscillations Oscillation: any general movement that repeats itself
Evaluating Angles.
Unit 3: Right Triangle Trigonometry
x x HW 13: Inverse Trig Functions HW 13: Inverse Trig Functions
A circle with center at (0, 0) and radius 1 is called a unit circle.
LT: I can use the Law of Sines and the Law of Cosines to find missing measurements on a triangle. Warm-Up Find the missing information.
Warm Up – 2/27 - Thursday Find the area of each triangle.
EML 4230 Introduction to Composite Materials
EML 4230 Introduction to Composite Materials
EML 4230 Introduction to Composite Materials
Fourier Analysis.
Presentation transcript:

STRESS TRANSFORMATION Zdeněk Padovec

Stress transformation y L unidirectional lamina EL, ET, GLT, νLT, α= 0°, 15°, 90° 𝜀 𝑥 𝜀 𝑦 𝛾 𝑥𝑦 =??? σx T α x

Stress transformation isotropic material 𝜀 𝑥 𝜀 𝑦 𝛾 𝑥𝑦 = 1 𝐸 − 𝜐 𝐸 0 − 𝜐 𝐸 1 𝐸 0 0 0 1 𝐺 𝜎 𝑥 𝜎 𝑦 𝜎 𝑥𝑦 = 1 𝐸 − 𝜐 𝐸 0 − 𝜐 𝐸 1 𝐸 0 0 0 1 𝐺 𝜎 𝑥 0 0 , 𝜀 𝑥 = 𝜎 𝑥 𝐸 , 𝜀 𝑦 =−𝜐 𝜀 𝑥 , 𝛾 𝑥𝑦 =0, 𝐺= 1 2 1+𝜈 . result is independent on angle orientation α

Stress transformation composite material compliance matrix in coordinate system LT 𝑆= 1 𝐸 𝐿 − 𝜐 𝑇𝐿 𝐸 𝑇 0 − 𝜐 𝐿𝑇 𝐸 𝐿 1 𝐸 𝑇 0 0 0 1 𝐺 𝐿𝑇 transformation to coordinate system xy 𝑆 ´ = 𝑇 𝜀 −1 𝑆 𝑇 𝜎

Stress transformation transformation to coordinate system xy 𝑇 𝜀 = cos 2 𝜃 sin 2 𝜃 sin𝜃cos𝜃 sin 2 𝜃 cos 2 𝜃 −sin𝜃cos𝜃 −2sin𝜃cos𝜃 2sin𝜃cos𝜃 cos 2 𝜃− sin 2 𝜃 𝑇 𝜎 = cos 2 𝜃 sin 2 𝜃 2sin𝜃cos𝜃 sin 2 𝜃 cos 2 𝜃 −2sin𝜃cos𝜃 −sin𝜃cos𝜃 sin𝜃cos𝜃 cos 2 𝜃− sin 2 𝜃 Hooke´s law 𝜀 𝑥 𝜀 𝑦 𝛾 𝑥𝑦 = 𝑆 11 ´ 𝑆 12 ´ 0 𝑆 21 ´ 𝑆 22 ´ 0 0 0 𝑆 66 ´ 𝜎 𝑥 𝜎 𝑦 𝜎 𝑥𝑦

Stress transformation 𝑆 11 ´ = 𝑆 11 cos 4 𝛼+ 𝑆 22 sin 4 𝛼+ 2 𝑆 12 + 𝑆 66 sin 2 𝛼 cos 2 𝛼 𝑆 12 ´ = 𝑆 21 ´ = 𝑆 11 + 𝑆 22 − 𝑆 66 sin 2 𝛼 cos 2 𝛼+ 𝑆 12 (cos 4 𝛼+ sin 4 𝛼) 𝑆 22 ´ = 𝑆 11 sin 4 𝛼+ 𝑆 22 cos 4 𝛼+ 2 𝑆 12 + 𝑆 66 sin 2 𝛼 cos 2 𝛼 𝑆 66 ´ =2 2 𝑆 11 + 𝑆 22 − 2𝑆 12 − 𝑆 66 sin 2 𝛼 cos 2 𝛼+ 𝑆 66 ( sin 4 𝛼+ cos 4 𝛼) α = 0° 𝑆 11 ´ = 𝑆 11 , 𝑆 12 ´ = 𝑆 21 ´ = 𝑆 12 =𝑆 21 , 𝑆 22 ´ = 𝑆 22 , 𝑆 66 ´ = 𝑆 66 𝜀 𝑥 = 𝑆 11 ´ 𝜎 𝑥 + 𝑆 12 ´ 𝜎 𝑦 +0 𝜎 𝑥𝑦 = 𝑆 11 𝜎 𝑥 + 𝑆 12 0+0∙0= 𝜎 𝑥 𝐸 𝐿 𝜀 𝑦 = 𝑆 21 ´ 𝜎 𝑥 + 𝑆 22 ´ 𝜎 𝑦 +0 𝜎 𝑥𝑦 = 𝑆 21 𝜎 𝑥 + 𝑆 22 0+0∙0=− 𝜈 𝐿𝑇 𝐸 𝐿 𝜎 𝑥 𝛾 𝑥𝑦 =0 𝜎 𝑥 +0 𝜎 𝑦 + 𝑆 66 ´ 𝜎 𝑥𝑦 =0

Stress transformation 𝑆 11 ´ = 𝑆 11 cos 4 𝛼+ 𝑆 22 sin 4 𝛼+ 2 𝑆 12 + 𝑆 66 sin 2 𝛼 cos 2 𝛼 𝑆 12 ´ = 𝑆 21 ´ = 𝑆 11 + 𝑆 22 − 𝑆 66 sin 2 𝛼 cos 2 𝛼+ 𝑆 12 (cos 4 𝛼+ sin 4 𝛼) 𝑆 22 ´ = 𝑆 11 sin 4 𝛼+ 𝑆 22 cos 4 𝛼+ 2 𝑆 12 + 𝑆 66 sin 2 𝛼 cos 2 𝛼 𝑆 66 ´ =2 2 𝑆 11 + 𝑆 22 − 2𝑆 12 − 𝑆 66 sin 2 𝛼 cos 2 𝛼+ 𝑆 66 ( sin 4 𝛼+ cos 4 𝛼) α = 90° 𝑆 11 ´ = 𝑆 22 , 𝑆 12 ´ = 𝑆 21 ´ = 𝑆 12 =𝑆 21 , 𝑆 22 ´ = 𝑆 11 , 𝑆 66 ´ = 𝑆 66 𝜀 𝑥 = 𝑆 11 ´ 𝜎 𝑥 + 𝑆 12 ´ 𝜎 𝑦 +0 𝜎 𝑥𝑦 = 𝑆 22 𝜎 𝑥 + 𝑆 12 0+0∙0= 𝜎 𝑥 𝐸 𝑇 𝜀 𝑦 = 𝑆 21 ´ 𝜎 𝑥 + 𝑆 22 ´ 𝜎 𝑦 +0 𝜎 𝑥𝑦 = 𝑆 21 𝜎 𝑥 + 𝑆 11 0+0∙0=− 𝜈 𝐿𝑇 𝐸 𝐿 𝜎 𝑥 𝛾 𝑥𝑦 =0 𝜎 𝑥 +0 𝜎 𝑦 + 𝑆 66 ´ 𝜎 𝑥𝑦 =0

Stress transformation 𝑆 11 ´ = 𝑆 11 cos 4 𝛼+ 𝑆 22 sin 4 𝛼+ 2 𝑆 12 + 𝑆 66 sin 2 𝛼 cos 2 𝛼 𝑆 12 ´ = 𝑆 21 ´ = 𝑆 11 + 𝑆 22 − 𝑆 66 sin 2 𝛼 cos 2 𝛼+ 𝑆 12 (cos 4 𝛼+ sin 4 𝛼) 𝑆 22 ´ = 𝑆 11 sin 4 𝛼+ 𝑆 22 cos 4 𝛼+ 2 𝑆 12 + 𝑆 66 sin 2 𝛼 cos 2 𝛼 𝑆 66 ´ =2 2 𝑆 11 + 𝑆 22 − 2𝑆 12 − 𝑆 66 sin 2 𝛼 cos 2 𝛼+ 𝑆 66 ( sin 4 𝛼+ cos 4 𝛼) α = 15° 𝑆 11 ´ = 0,87𝑆 11 +0,0045 𝑆 22 +0,0625(2 𝑆 12 + 𝑆 66 ) 𝑆 12 ´ = 𝑆 21 ´ =0,0625 𝑆 11 + 𝑆 22 − 𝑆 66 +0,875 𝑆 12 𝑆 22 ´ = 0,0045𝑆 11 +0,87 𝑆 22 +0,0625 2 𝑆 12 + 𝑆 66 𝑆 66 ´ =2 2 𝑆 11 + 𝑆 22 − 2𝑆 12 − 𝑆 66 0,0625+ 0,875𝑆 66

Stress transformation α = 15° 𝑆 11 ´ = 0,87𝑆 11 +0,0045 𝑆 22 +0,0625(2 𝑆 12 + 𝑆 66 ) 𝑆 12 ´ = 𝑆 21 ´ =0,0625 𝑆 11 + 𝑆 22 − 𝑆 66 +0,875 𝑆 12 𝑆 22 ´ = 0,0045𝑆 11 +0,87 𝑆 22 +0,0625 2 𝑆 12 + 𝑆 66 𝑆 66 ´ =2 2 𝑆 11 + 𝑆 22 − 2𝑆 12 − 𝑆 66 0,0625+ 0,875𝑆 66 𝜀 𝑥 = 𝑆 11 ´ 𝜎 𝑥 + 𝑆 12 ´ 𝜎 𝑦 +0 𝜎 𝑥𝑦 = 0,87𝑆 11 +0,0045 𝑆 22 +0,0625(2 𝑆 12 + 𝑆 66 ) 𝜎 𝑥 𝜀 𝑦 = 𝑆 21 ´ 𝜎 𝑥 + 𝑆 22 ´ 𝜎 𝑦 +0 𝜎 𝑥𝑦 = 0,0625 𝑆 11 + 𝑆 22 − 𝑆 66 +0,875 𝑆 12 𝜎 𝑥 𝛾 𝑥𝑦 =0 𝜎 𝑥 +0 𝜎 𝑦 + 𝑆 66 ´ 𝜎 𝑥𝑦 =0