Whole joint MRI assessment of surgical cartilage repair of the knee: Cartilage Repair OsteoArthritis Knee Score (CROAKS)  F.W. Roemer, A. Guermazi, S.

Slides:



Advertisements
Similar presentations
C. G Peterfy, M. D. Ph. D. , A Guermazi, M. D. , S Zaim, M. D. , P. F
Advertisements

Changes in patellofemoral and tibiofemoral joint cartilage damage and bone marrow lesions over 7 years: the Multicenter Osteoarthritis Study  J.J. Stefanik,
Evaluation of Knee Pain in Athletes: A Radiologist's Perspective
The role of imaging modalities in the diagnosis, differential diagnosis and clinical assessment of peripheral joint osteoarthritis  C.Y.J. Wenham, A.J.
High-Resolution Ultrasound and Magnetic Resonance Imaging to Document Tissue Repair After Prolotherapy: A Report of 3 Cases  Bradley D. Fullerton, MD 
MRI-detected subchondral bone marrow signal alterations of the knee joint: terminology, imaging appearance, relevance and radiological differential diagnosis 
MRI protocols for whole-organ assessment of the knee in osteoarthritis
Imaging of Osteoarthritis
Validity and responsiveness of a new measure of knee osteophytes for osteoarthritis studies: data from the osteoarthritis initiative  M. Hakky, M. Jarraya,
A narrative overview of the current status of MRI of the hip and its relevance for osteoarthritis research – what we know, what has changed and where.
A. Guermazi, H. Alizai, M. D. Crema, S. Trattnig, R. R. Regatte, F. W
T1ρ relaxation time of the meniscus and its relationship with T1ρ of adjacent cartilage in knees with acute ACL injuries at 3T  R.I. Bolbos, Ph.D., T.M.
Prevalence of labral tears and cartilage loss in patients with mechanical symptoms of the hip: evaluation using MR arthrography  G. Neumann, M.D., A.D.
Functional cartilage MRI T2 mapping: evaluating the effect of age and training on knee cartilage response to running  T.J. Mosher, Y. Liu, C.M. Torok 
Subchondral bone marrow lesions are highly associated with, and predict subchondral bone attrition longitudinally: the MOST study  F.W. Roemer, T. Neogi,
Changes in patellofemoral and tibiofemoral joint cartilage damage and bone marrow lesions over 7 years: the Multicenter Osteoarthritis Study  J.J. Stefanik,
Imaging following acute knee trauma
Loss of anterior cruciate ligament integrity and the development of radiographic knee osteoarthritis: a sub-study of the osteoarthritis initiative  V.L.
Changes in the T2 relaxation value of the tibiofemoral articular cartilage about 6 months after anterior cruciate ligament reconstruction using the double-bundle.
Osteoporosis increases the severity of cartilage damage in an experimental model of osteoarthritis in rabbits  E. Calvo, M.D., S. Castañeda, M.D., R.
T1ρ and T2 relaxation times predict progression of knee osteoarthritis
Predictive validity of within-grade scoring of longitudinal changes of MRI-based cartilage morphology and bone marrow lesion assessment in the tibio-femoral.
Increased risk for radiographic osteoarthritis features in young active athletes: a cross- sectional matched case–control study  F.W. Roemer, M. Jarraya,
Anatomical distribution of areas of preserved cartilage in advanced femorotibial osteoarthritis using CT arthrography (Part 1)  P. Omoumi, N. Michoux,
Imaging of non-osteochondral tissues in osteoarthritis
C. G Peterfy, M. D. Ph. D. , A Guermazi, M. D. , S Zaim, M. D. , P. F
7th International Workshop on Osteoarthritis Imaging report: “imaging in OA – now is the time to move ahead”  A. Guermazi, F. Eckstein, D. Hunter, F.
Intraoperative validation of quantitative T2 mapping in patients with articular cartilage lesions of the knee  S.T. Soellner, A. Goldmann, D. Muelheims,
Severity mapping of the proximal femur: a new method for assessing hip osteoarthritis with computed tomography  T.D. Turmezei, D.J. Lomas, M.A. Hopper,
Cyst-like lesions of the knee joint and their relation to incident knee pain and development of radiographic osteoarthritis: the MOST study  A. Guermazi,
Knee joint subchondral bone structure alterations in active athletes: a cross-sectional case–control study  F.W. Roemer, M. Jarraya, J. Niu, J. Duryea,
Evolution of semi-quantitative whole joint assessment of knee OA: MOAKS (MRI Osteoarthritis Knee Score)  D.J. Hunter, A. Guermazi, G.H. Lo, A.J. Grainger,
Bone marrow lesions, subchondral bone cysts and subchondral bone attrition are associated with histological synovitis in patients with end-stage knee.
The osteoarthritis initiative: report on the design rationale for the magnetic resonance imaging protocol for the knee  C.G. Peterfy, M.D., Ph.D., E.
Complete anterior cruciate ligament tear and the risk for cartilage loss and progression of symptoms in men and women with knee osteoarthritis  S. Amin,
Morphological changes of the lateral meniscus in end-stage lateral compartment osteoarthritis of the knee  S.H. Hwang, K.A. Jung, W.J. Lee, K.H. Yang,
Structural correlates of pain in joints with osteoarthritis
L. A. MacFarlane, H. Yang, J. E. Collins, A. Guermazi, M. H. Jones, E
Volumetric and semiquantitative assessment of MRI-detected subchondral bone marrow lesions in knee osteoarthritis: a comparison of contrast-enhanced and.
Presence, location, type and size of denuded areas of subchondral bone in the knee as a function of radiographic stage of OA – data from the OA initiative 
Whole joint MRI assessment of surgical cartilage repair of the knee: Cartilage Repair OsteoArthritis Knee Score (CROAKS)  F.W. Roemer, A. Guermazi, S.
S. Reichenbach, M. D. , A. Guermazi, M. D. , J. Niu, M. B. B. S. , D
F. Eckstein, A. Guermazi, G. Gold, J. Duryea, M. -P
Comparison between semiquantitative and quantitative methods for the assessment of knee synovitis in osteoarthritis using non-enhanced and gadolinium-enhanced.
Hip Osteoarthritis MRI Scoring System (HOAMS): reliability and associations with radiographic and clinical findings  F.W. Roemer, D.J. Hunter, A. Winterstein,
The OARSI histopathology initiative – recommendations for histological assessments of osteoarthritis in the rat  N. Gerwin, A.M. Bendele, S. Glasson,
Metabolic enrichment of omega-3 polyunsaturated fatty acids does not reduce the onset of idiopathic knee osteoarthritis in mice  A. Cai, E. Hutchison,
M. K. Javaid, J. A. Lynch, I. Tolstykh, A. Guermazi, F. Roemer, P
D. J. Hunter, D. P. Beavers, F. Eckstein, A. Guermazi, R. F. Loeser, B
Relationship between knee pain and the presence, location, size and phenotype of femorotibial denuded areas of subchondral bone as visualized by MRI 
Is increased joint loading detrimental to obese patients with knee osteoarthritis? A secondary data analysis from a randomized trial  M. Henriksen, D.J.
D. Hayashi, F.W. Roemer, A. Guermazi  Osteoarthritis and Cartilage 
Pre-radiographic osteoarthritic changes are highly prevalent in the medial patella and medial posterior femur in older persons: Framingham OA study  D.
The association of prevalent medial meniscal pathology with cartilage loss in the medial tibiofemoral compartment over a 2-year period  M.D. Crema, A.
Bone marrow lesions and joint effusion are strongly and independently associated with weight-bearing pain in knee osteoarthritis: data from the osteoarthritis.
Baseline radiographic osteoarthritis and semi-quantitatively assessed meniscal damage and extrusion and cartilage damage on MRI is related to quantitatively.
Magnetic resonance imaging (MRI)-defined cartilage degeneration and joint pain are associated with poor physical function in knee osteoarthritis – the.
Progression of cartilage damage and meniscal pathology over 30 months is associated with an increase in radiographic tibiofemoral joint space narrowing.
Comparison of BLOKS and WORMS scoring systems part I
Assessment of clinical and MRI outcomes after mesenchymal stem cell implantation in patients with knee osteoarthritis: a prospective study  Y.S. Kim,
Spectrum of meniscal pathology in osteoarthritis revisited - from signal change to complete destruction.  M. Jarraya, F.W. Roemer, M. Englund, M.D. Crema,
D. J. Hunter, N. Arden, F. Cicuttini, M. D. Crema, B. Dardzinski, J
Magnitude and regional distribution of cartilage loss associated with grades of joint space narrowing in radiographic osteoarthritis – data from the Osteoarthritis.
Trajectory of cartilage loss within 4 years of knee replacement – a nested case–control study from the Osteoarthritis Initiative  F. Eckstein, R.M. Boudreau,
Is the atrophic phenotype of tibiofemoral osteoarthritis associated with faster progression of disease? The MOST study  M.D. Crema, D.T. Felson, A. Guermazi,
Preliminary study on diffraction enhanced radiographic imaging for a canine model of cartilage damage  C. Muehleman, Ph.D., J. Li, M.D., Z. Zhong, Ph.D. 
The association of meniscal damage with joint effusion in persons without radiographic osteoarthritis: the Framingham and MOST osteoarthritis studies 
Osteoarthritis year 2012 in review: imaging
Tibial coverage, meniscus position, size and damage in knees discordant for joint space narrowing – data from the Osteoarthritis Initiative  K. Bloecker,
Fig. 1. Right knee MRI of a 44-year-old male presenting with knee pain previously treated at an outside hospital. (a) Coronal fat-saturated T2 weighted.
Presentation transcript:

Whole joint MRI assessment of surgical cartilage repair of the knee: Cartilage Repair OsteoArthritis Knee Score (CROAKS)  F.W. Roemer, A. Guermazi, S. Trattnig, S. Apprich, S. Marlovits, J. Niu, D.J. Hunter, G.H. Welsch  Osteoarthritis and Cartilage  Volume 22, Issue 6, Pages 779-799 (June 2014) DOI: 10.1016/j.joca.2014.03.014 Copyright © 2014 Osteoarthritis Research Society International Terms and Conditions

Fig. 1 Coronal fat-suppressed proton density-weighted TSE MRI. Status 10.5 months after MACT of the central lateral femur. A. A large subchondral BML in the lateral femur adjacent to repair site (arrows) and additional BML at articulating lateral tibia (no repair site – arrowheads) is observed. B. Same patient. In addition, a cartilage fissure reaching the subchondral bone is observed at the lateral border of defect filling (arrowhead). Again an extensive BML adjacent to repair site is seen (arrows). Osteoarthritis and Cartilage 2014 22, 779-799DOI: (10.1016/j.joca.2014.03.014) Copyright © 2014 Osteoarthritis Research Society International Terms and Conditions

Fig. 2 Coronal fat-suppressed proton density-weighted TSE MRI. Status 12 months post-cartilage repair of the central lateral femur. Partial delamination of the repair tissue from the subchondral bone is seen. Fluid equivalent signal is observed between the subchondral bone and the cartilage flap (small asterisk). In addition a large marginal osteophyte at the lateral femur is observed (arrowhead). Note small intrachondral signal change at the lateral tibia adjacent to tibial spine (arrow). Osteoarthritis and Cartilage 2014 22, 779-799DOI: (10.1016/j.joca.2014.03.014) Copyright © 2014 Osteoarthritis Research Society International Terms and Conditions

Fig. 3 Coronal MPR of 3D-True-FISP MRI. Status 11 months after cartilage repair of the medial and lateral patella facets. A large subchondral BML is seen in the central lateral tibia (arrows). Note marginal osteophyte at the lateral femur. Osteoarthritis and Cartilage 2014 22, 779-799DOI: (10.1016/j.joca.2014.03.014) Copyright © 2014 Osteoarthritis Research Society International Terms and Conditions

Fig. 4 Coronal MPR of 3D-True-FISP MRI. Status 12 months post-MACT of the central medial femur. Partial filling of defect is observed (arrow). In addition large peripheral osteophytes characterizing manifest osteoarthritis are depicted medially and laterally (arrowheads). Osteoarthritis and Cartilage 2014 22, 779-799DOI: (10.1016/j.joca.2014.03.014) Copyright © 2014 Osteoarthritis Research Society International Terms and Conditions

Fig. 5 Coronal fat-suppressed proton density-weighted TSE MRI. Status 12.5 months post-MACT of the central lateral femur. A full thickness cartilage fissure-like defect is seen at the repair site (arrowhead). In addition a large subchondral BML is seen adjacent to repair site (arrows). Osteoarthritis and Cartilage 2014 22, 779-799DOI: (10.1016/j.joca.2014.03.014) Copyright © 2014 Osteoarthritis Research Society International Terms and Conditions

Fig. A1 Axial subregional division in CROAKS. Axial proton density-weighted MR image shows subdivision of the patella into the medial (M) and lateral (L) facet (i.e., subregion). The patella apex (arrow) is part of the medial subregion in CROAKS. Osteoarthritis and Cartilage 2014 22, 779-799DOI: (10.1016/j.joca.2014.03.014) Copyright © 2014 Osteoarthritis Research Society International Terms and Conditions

Fig. A2 Sagittal subregional division. Anatomical delineation of the femur into the anterior (alF, i.e., lateral tochlea), central (clF) and posterior (plF) subregions. The tibia is subdivided into anterior (alT), central (clT) and posterior (plT) subregions, separated by equal thirds. In addition the lateral patellar facet (lPat) is shown in this sagittal proton density-weighted image. Subregions that are scored using the cartilage repair component of CROAKS are delineated in green in this specific example as both, the anterior and central parts of the lateral femur had undergone a cartilage repair procedure. Subregions that are being scored using the whole joint component are marked in yellow in this example. Osteoarthritis and Cartilage 2014 22, 779-799DOI: (10.1016/j.joca.2014.03.014) Copyright © 2014 Osteoarthritis Research Society International Terms and Conditions

Fig. A3 Coronal True-FISP image shows the subregional delineation in the coronal plane. The joint is divided into the medial and lateral tibio-femoral compartment with the femoral notch being part of the medial compartment in CROAKS. The tibio-femoral plates are the lateral femur (lF), the lateral tibia (lT), the medial femur (mF) and the medial tibia (mT). The subspinous region (SS) is defined as the part of the joint directly underneath the tibial spines. Osteoarthritis and Cartilage 2014 22, 779-799DOI: (10.1016/j.joca.2014.03.014) Copyright © 2014 Osteoarthritis Research Society International Terms and Conditions

Fig. A4 Defect fill. Sagittal proton density-weighted MR image shows hypertrophy of the repair zone (arrow). In addition there are hypo- (white asterisk) and hyperintensity (black asterisk) signal changes within the repair tissue. Osteoarthritis and Cartilage 2014 22, 779-799DOI: (10.1016/j.joca.2014.03.014) Copyright © 2014 Osteoarthritis Research Society International Terms and Conditions

Fig. A5 Cartilage interface. Sagittal proton density-weighted MR image shows a fissure-like defect at the posterior junction of the repair tissue to the native cartilage (arrow). In addition there is superficial cartilage damage at the central subregion of the lateral tibia, which is distant to the repair site (arrowhead). Osteoarthritis and Cartilage 2014 22, 779-799DOI: (10.1016/j.joca.2014.03.014) Copyright © 2014 Osteoarthritis Research Society International Terms and Conditions

Fig. A6 BMLs. A. Sagittal fat-saturated proton density-weighted MR image shows a grade 1 BML in the posterior subregion of the medial femur extending into the medial central femoral subregion (arrows). B. BMLs at the medial (arrowheads) and lateral (large arrow) femur and at the medial tibia (small arrow). Note that these BMLs are partly in a subregion of cartilage repair (medial femur), partly distant from the repair site. In addition there are osteophytes at the medial femur and tibia (gray arrowheads). Osteoarthritis and Cartilage 2014 22, 779-799DOI: (10.1016/j.joca.2014.03.014) Copyright © 2014 Osteoarthritis Research Society International Terms and Conditions

Fig. A7 Sagittal fat-saturated proton density-weighted MR image shows large BML in the anterior lateral femur composed of an ill-defined portion (arrows) and a cystic portion (arrowhead) within the same lesion. Osteoarthritis and Cartilage 2014 22, 779-799DOI: (10.1016/j.joca.2014.03.014) Copyright © 2014 Osteoarthritis Research Society International Terms and Conditions

Fig. A8 Cartilage lesions distant to the repair site. A. Sagittal fat-saturated proton density-weighted MR image shows focal superficial defect (grade 1.0) at the central subregion of the lateral femur (arrow). B. Diffuse cartilage damage in the medial tibio-femoral joint. There is a large area of full thickness denudation at the central subregion of the medial femur with adjacent subchondral BML (arrow). In addition there is diffuse full thickness loss (grade 2.2) at the central subregion of the medial tibia (white arrowhead). Note superficial cartilage damage at the posterior medial femur (black arrowheads). Osteoarthritis and Cartilage 2014 22, 779-799DOI: (10.1016/j.joca.2014.03.014) Copyright © 2014 Osteoarthritis Research Society International Terms and Conditions

Fig. A9 Osteophyte assessment in the different imaging planes. M – medial, L – lateral, A – anterior, P – posterior. In the sagittal plane only the lateral tibio-femoral compartment is depicted. CROAKS assesses osteophytes in 12 locations altogether. Osteoarthritis and Cartilage 2014 22, 779-799DOI: (10.1016/j.joca.2014.03.014) Copyright © 2014 Osteoarthritis Research Society International Terms and Conditions

Fig. A10 Osteophytes. Sites for osteophyte scoring. A. Superior and inferior patella pole is scored on mid-line sagittal image. B. Anterior and posterior medial and lateral femoral osteophytes are scored on axial images. Note that for two possible locations of the medial and lateral posterior femur respectively, only the larger one is coded. C. Four locations are assessed on coronal images, i.e., marginal osteophytes of the medial and lateral femur and tibia (arrows). Note in addition there is superficial cartilage damage at the medial femur (grade 2.0, arrowhead) and marked meniscal extrusion medially in this example (double-headed arrow). Osteoarthritis and Cartilage 2014 22, 779-799DOI: (10.1016/j.joca.2014.03.014) Copyright © 2014 Osteoarthritis Research Society International Terms and Conditions

Fig. A11 Hoffa-synovitis. Hyperintensity signal changes on fat-saturated MR images within Hoffa's fat pad are scored as a surrogate for synovitis. A. Grade 1 Hoffa-synovitis (arrow). B. Grade 2 Hoffa-synovitis (arrows). C. Scarring in Hoffa's fat pad can not be distinguished from synovitis. These signal changes are scored grade 3 acknowledging the non-specificity of the finding. Osteoarthritis and Cartilage 2014 22, 779-799DOI: (10.1016/j.joca.2014.03.014) Copyright © 2014 Osteoarthritis Research Society International Terms and Conditions

Fig. A12 Effusion–synovitis. Axial fat-saturated proton density or T2-weighted MR images are used to assess effusion–synovitis. A. Grade 1 effusion–synovitis is shown as hyperintensity in the joint cavity without relevant capsular distension (arrow). B. Grade 2 effusion–synovitis is characterized by moderate capsular distension (arrows). C. Grade 3 effusion–synovitis shows marked capsular distension and diffuse hyperintensity within the joint cavity (arrows). Osteoarthritis and Cartilage 2014 22, 779-799DOI: (10.1016/j.joca.2014.03.014) Copyright © 2014 Osteoarthritis Research Society International Terms and Conditions

Fig. A13 Meniscal extrusion. A. Arrow points to margin of tibial plateau. Grade 1 medial extrusion is seen on this proton density-weighted image (arrow). B. Grade 2 medial extrusion is depicted (arrowhead). Osteoarthritis and Cartilage 2014 22, 779-799DOI: (10.1016/j.joca.2014.03.014) Copyright © 2014 Osteoarthritis Research Society International Terms and Conditions

Fig. A14 Meniscal morphology. A. Sagittal proton density-weighted fat-saturated MR image shows horizontal-oblique tear of the medial posterior horn (arrow). Note small adjacent BML at the central subregion of t1he medial femur (arrowhead). B. Vertical tear of the medial posterior horn (arrow). There is large popliteal cyst in addition. C. Complex tear of the posterior horn of the medial meniscus. Linear hyperintensities are reaching the meniscal superior (thick arrow) and inferior (arrowhead) surfaces and the posterior base (thin arrow). Osteoarthritis and Cartilage 2014 22, 779-799DOI: (10.1016/j.joca.2014.03.014) Copyright © 2014 Osteoarthritis Research Society International Terms and Conditions