IB Physics Topic 3 & 10 Mr. Jean May 7 th, 2014. The plan: Video clip of the day Thermodynamics Carnot Cycle Second Law of Thermodynamics Refrigeration.

Slides:



Advertisements
Similar presentations
The Laws of Thermodynamics and Air Conditioners
Advertisements

8.1 Air Conditioners. Clicker question: Who first realized that the Earths temperature will rise due to increased Carbon Dioxide in the atmosphere from.
Air Conditioners.
Air Conditioners. Introductory Question If you operate a window air conditioner on a table in the middle of a room, the average temperature in the room.
Thermodynamics.
The Laws of Thermodynamics
AP Physics Thermodynamics II.
HEAT, WORK AND INTERNAL ENERGY
Air Conditioners.
Laws of Thermodynamics The first law states that the change in the energy of a system is the amount of energy added to the system minus the energy spent.
Refrigerators Physics 313 Professor Lee Carkner Lecture 13.
Physics 101: Lecture 31, Pg 1 Physics 101: Lecture 31 Thermodynamics, part 2 l Review of 1st law of thermodynamics l 2nd Law of Thermodynamics l Engines.
Second Law of Thermodynamics Physics 202 Professor Lee Carkner Lecture 18.
The Second Law of Thermodynamics Physics 102 Professor Lee Carkner Lecture 6.
The Second Law of Thermodynamics Physics 102 Professor Lee Carkner Lecture 7.
The Second Law of Thermodynamics Physics 102 Professor Lee Carkner Lecture 7.
UB, Phy101: Chapter 15, Pg 1 Physics 101: Chapter 15 Thermodynamics, Part I l Textbook Sections 15.1 – 15.5.
MHS Physics Department AP Unit II C 2 Laws of Thermodynamics Ref: Chapter 12.
Dr.Salwa Al Saleh Lecture 12 Air Conditioners Air Conditioners Air Conditioners Air Conditioners.
Important Terms & Notes Conceptual Physics Mar. 12, 2014.
Physics Lecture Notes The Laws of Thermodynamics
Thermodynamics I MECN 4201 Professor: Dr. Omar E. Meza Castillo
THERMODYNAMICS CH 15.
Lecture Outline Chapter 18 Physics, 4th Edition James S. Walker
Heat Engines, Entropy and the Second Law of Thermodynamics
The Laws of Thermodynamics
ThermodynamicsThermodynamics. Mechanical Equivalent of Heat Heat produced by other forms of energy Heat produced by other forms of energy Internal Energy:
Changes of Phase List the four phases of matter in order of increasing internal energy.
Chapter 15: Thermodynamics
Heat, Work, and Internal Energy Thermodynamic Processes.
The Laws of Thermodynamics
Second Law of Thermodynamics.  No cyclic process that converts heat entirely into work is possible.  W can never be equal to Q.  Some energy must always.
Physics 101: Lecture 28, Pg 1 Physics 101: Lecture 28 Thermodynamics II l Today’s lecture will cover Textbook Chapter Final.
Thermodynamics … the study of how thermal energy can do work
Laws of Thermodynamics Thermal Physics, Lecture 4.
Thermodynamics The First Law of Thermodynamics Thermal Processes that Utilize an Ideal Gas The Second Law of Thermodynamics Heat Engines Carnot’s Principle.
The Second Law of Thermodynamics Chapter 6. The Second Law  The second law of thermodynamics states that processes occur in a certain direction, not.
Lecture Outline Chapter 12 College Physics, 7 th Edition Wilson / Buffa / Lou © 2010 Pearson Education, Inc.
Physics 101: Lecture 28, Pg 1 Physics 101: Lecture 28 Thermodynamics II l Today’s lecture will cover Textbook Chapter Final Check Final Exam.
Thermodynamics How Energy Is Transferred As Heat and Work Animation Courtesy of Louis Moore.
© 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their.
Chapter 13: Thermodynamics
CHAPTER 15 Thermodynamics Thermodynamic Systems and Their Surroundings Thermodynamics is the branch of physics that is built upon the fundamental.
MME 2009 Metallurgical Thermodynamics
PHY1039 Properties of Matter Heat Engines, Thermodynamic Efficiency, and Carnot Cycles April 30 and May 3, 2012 Lectures 17 and 18.
Thermodynamics Internal energy of a system can be increased either by adding energy to the system or by doing work on the system Remember internal energy.
Heat Engine Example (22.5): A particular heat engine has a mechanical power output of 5.00 kW and an efficiency of 25.0%. The engine expels 8.00 x 10.
1 Second Law of Thermodynamics Engines and Refrigerators.
Chapter 11 Laws of Thermodynamics. Chapter 11 Objectives Internal energy vs heat Work done on or by a system Adiabatic process 1 st Law of Thermodynamics.
203/4c18:1 Chapter 18: The Second Law of Thermodynamics Directions of a thermodynamic process Reversible processes: Thermodynamic processes which can be.
Physics 101: Lecture 28, Pg 1 Physics 101: Lecture 28 Thermodynamics II l Today’s lecture will cover Textbook Chapter Final Check Final Exam.
Physics 101: Lecture 28, Pg 1 Physics 101: Lecture 28 Thermodynamics II l Today’s lecture will cover Textbook Chapter
Physics 101: Lecture 26, Pg 1 Physics 101: Lecture 26 Thermodynamics II Final.
Thermodynamics II Thermodynamics II. THTH TCTC QHQH QCQC W HEAT ENGINE THTH TCTC QHQH QCQC W REFRIGERATOR system l system taken in closed cycle   U.
Lecture 26: Thermodynamics II l Heat Engines l Refrigerators l Entropy l 2 nd Law of Thermodynamics l Carnot Engines.
Chapter 12 Laws of Thermodynamics. Chapter 12 Objectives Internal energy vs heat Work done on or by a system Adiabatic process 1 st Law of Thermodynamics.
Work in Thermodynamic Processes
Dr. Owen Clarkin School of Mechanical & Manufacturing Engineering Summary of Energy Topics Chapter 1: Thermodynamics / Energy Introduction Chapter 2: Systems.
Lecture 27Purdue University, Physics 2201 Lecture 27 Thermodynamics II Physics 220.
Physics 101: Lecture 26, Pg 1 Chapter 15, Problem 3 Consider a hypothetical device that takes 1000 J of heat from a hot reservoir at 300K, ejects 200 J.
Chapter 7 THE SECOND LAW OF THERMODYNAMICS
2 2 The second law of thermodynamics It will arouse changes while the heat transfers from low temp. substance to high temp. one.
Chapter 11 Super Review. 1. A two mole sample of a gas has a temperature of 1000 K and a volume of 6 m 3. What is the pressure?
Automotive Air Conditioners
Topic #3 – Air Conditioning and Thermodynamic Processes Mr. Jean
Physics 101: Lecture 28 Thermodynamics II
Dr.Salwa Alsaleh fac.ksu.edu.sa/salwams
Heat Engines Entropy The Second Law of Thermodynamics
AP Physics B, Thermodynamics The Laws of Thermodynamics
Presentation transcript:

IB Physics Topic 3 & 10 Mr. Jean May 7 th, 2014

The plan: Video clip of the day Thermodynamics Carnot Cycle Second Law of Thermodynamics Refrigeration

Recap 1 st Law of Thermodynamics energy conservation Q = U + W Heat flow into system Increase in internal energy of system Work done by system V P l U depends only on T (U = nRT = PV) l point on PV plot completely specifies state of system (PV = nRT) l work done is area under curve l for complete cycle U = 0 Q = W

What do the cycles apply to? THTH TCTC QHQH QCQC W HEAT ENGINE THTH TCTC QHQH QCQC W REFRIGERATOR system l system taken in closed cycle U system = 0 l therefore, net heat absorbed = work done Q H - Q C = W (engine) Q C - Q H = -W (refrigerator) energy into blue blob = energy leaving bluegreen blob

Heat Engine: Efficiency THTH TCTC QHQH QCQC W HEAT ENGINE Goal: Get work from thermal energy in the hot reservoir 1 st Law: Q H - Q C = W, ( U = 0 for cycle) Define efficiency as work done per thermal energy used e What is the best we can do? Solved by Sadi Carnot in 1824 with the Carnot Cycle W QHQH

Carnot Cycle Adiabat Q = 0 P V Isotherm Q H = W H Isotherm Q C = W C Designed by Sadi Carnot in 1824, maximally efficient Q H enters from 1-2 at constant T H and Q C leaves from 3-4 at constant T L Work done W net = W H – W C = Q H – Q C = W Efficiency is W / Q H = ( Q H – Q C ) / Q H Since U T then Q – W is also proportional to T but from (1-2) and (3-4) Q = W so Q T Efficiency is W / T H = ( T H – T C ) / T H e max = 1 – QHQH QCQC TCTC THTH /

Heat Engine: Entropy We can define a useful new quantity Entropy, S Entropy measures the disorder of a system Only changes in S matter to us S = T Q Change in entropy depends on thermal energy flow (heat) at temperature T THTH TCTC QHQH QCQC W HEAT ENGINE

Heat Engine: Entropy Entropy, Smeasures the disorder of a system changes in S matter S = If = as in the Carnot Cycle T Q THTH QHQH TCTC QCQC … then there is no net change in entropy for the cycle and efficiency is a maximum, … because we do as much work as is possible THTH TCTC QHQH QCQC W HEAT ENGINE

2 nd Law of Thermodynamics Heat flows from hot to cold naturally One cannot convert a quantity of thermal energy entirely to useful work (Kelvin) The entropy, disorder, always increases in closed systems In closed systems, S > 0 for all real processes One cannot transfer thermal energy from a cold reservoir to hot reservoir without doing work (Clausius) Only in the ideal case of maximum efficiency would S = 0

Does the apparent order of life on Earth imply the 2 nd law is wrong or that some supernatural being is directing things? EXAMPLE No. The second law applies to closed systems, those with no energy coming in or going out. As long as the Sun shines more energy falls on the Earth, and more work can be done by the plants to build new mass, release oxygen, grow, metabolize.

What is happening to the Universe? EXAMPLE The universe is slowly coming to an end. When the entire universe is at the same temperature, then no work will be possible, and no life and no change … billions and billions and billions of years from now … Heat Death

Consider a hypothetical device that takes 1000 J of heat from a hot reservoir at 300K, ejects 200 J of heat to a cold reservoir at 100K, and produces 800 J of work. Is this possible? EXAMPLE The maximum efficiency is e max = 1 – T L /T H = 67%, but the proposed efficiency is e prop = W/Q H = 80%. This violates the 2 nd law – do not buy shares in the company designing this engine!

Consider a hypothetical refrigerator that takes 1000 J of heat from a cold reservoir at 100K and ejects 1200 J of heat to a hot reservoir at 300K. Is this possible? EXAMPLE The entropy of the cold reservoir decreases by S C = 1000 J / 100 K = 10 J/K The entropy of the heat reservoir increases by S H = 1200 J / 300 K = 4 J/K There would be a net decrease in entropy which would violate the 2 nd Law, so this refrigerator is not possible What is the minimum work needed? 2000 J, so that S H becomes at least 10 J/K

Air Conditioners Uses a working fluid (freon or other nicer gas) to carry heat from cool room to hot surroundings – same as a refrigerator, moving Q from inside fridge to your kitchen, which you must then air condition!

Air Conditioners

Evaporator located in room air transfers heat from room air to fluid Compressor located in outside air does work on fluid and heats it further Condenser located in outside air transfers heat from fluid to outside air Then the fluid reenters room for next cycle

Evaporator Fluid nears evaporator as a high pressure liquid near room temperature A constriction reduces the fluid pressure Fluid enters evaporator as a low pressure liquid near room temperature Heat exchanger made from a long metal pipe Working fluid evaporates in the evaporator – requires energy L V to separate molecules, so fluid cools & Q flows from room to fluid Fluid leaves evaporator as a low pressure gas near room temperature, taking thermal energy with it, leaving the room cooler!

Compressor Working fluid enters compressor as a low pressure gas near room temperature Gas is compressed (PV work) so gas T rises (1 st Law, T U & U when PV work is done) Compressing gas forces Q out of it into surroundings (open air) Fluid leaves compressor as hot, high pressure gas

Condenser Fluid enters condenser (heat exchanger made from long metal pipe) as a hot, high pressure gas Q flows from fluid to outside air Gas releases energy across heat exchanger to air and condenses forming bonds releases energy L V – thermal energy & fluid becomes hotter liquid so even more heat flows from fluid into outside air Fluid leaves condenser as high pressure liquid near room temperature to repeat the cycle

Summary Condenser – in outside air transfers heat from fluid to outside air, including thermal energy extracted from inside air and thermal energy added by compressor Evaporator – in room transfers heat from room air to working fluid Compressor – outside does work on fluid, so fluid gets hotter Entropy of room has decreased but entropy of outside has increased by more than enough to compensate – order to disorder