Injection seeded ns-pulsed Nd:YAG laser at 1116 nm for Fe-Lidar

Slides:



Advertisements
Similar presentations
10W Injection-Locked CW Nd:YAG laser
Advertisements

Positronium Rydberg excitation in AEGIS Physics with many positrons International Fermi School July 2009 – Varenna, Italy The experimental work on.
P.M. Paul, L.Vigroux, G. Riboulet, F.Falcoz. 2 Main Limitation in High gain Amplifier: Gain Narrowing Ti:Sa Pockels cell FWHM
High energy, high repetition rate pump laser system for OPCPAs A.-L. Calendron 1,2,3, L. E. Zapata 1,4, H. Çankaya 1,2, H. Lin 4 and F. X. Kärtner 1,2,3,4.
Visible Laser Light — Do Not Stare into Beam or View Directly with Optical Instruments Initials: __________Date: __________ CW power: ______________WType:
Measured parameters: particle backscatter at 355 and 532 nm, particle extinction at 355 nm, lidar ratio at 355 nm, particle depolarization at 355 nm, atmospheric.
Invisible and Visible Laser Radiation — Avoid Direct Eye Exposure Initials: __________Date: __________ CW power: ______________WType: _______________ Pulse.
Lecture 38 Lasers Final Exam next week. LASER L ight A mplification by S timulated E mission of R adiation.
Invisible and Visible Laser Radiation — Avoid Direct Eye Exposure Initials: __________Date: __________ CW power: ______________WType: _______________ Pulse.
Updates on Single Frequency 2 µm Laser Sources
TCT+, eTCT and I-DLTS measurement setups at the CERN SSD Lab
SAPPHiRE workshop, CERN 19 th Feb 2013 A SAPPHiRE Laser? Laura Corner Lasers for Accelerators group (L4A) John Adams Institute for Accelerator Science,
Laser Notcher Pulse Energy Requirements & Demonstration Experiment David Johnson, Todd Johnson, Vic Scarpine.
ILE OSAKA New Concept of DPSSL - Tuning laser parameters by controlling temperature - Junji Kawanaka ILE OSAKA US-Japan Workshop on Laser-IFE March.
Siegfried Schreiber, DESY The TTF Laser System Laser Material Properties Conclusion? Issues on Longitudinal Photoinjector.
The ILC Laser-wire system Sudhir Dixit The John Adams Institute University of Oxford.
Formatvorlage des Untertitelmasters durch Klicken bearbeiten 1/26/15 1 kHz, multi-mJ Yb:KYW bulk regenerative amplifier 1 Ultrafast Optics and X-Ray Division,
October 16-18, 2012Working Group on Space-based Lidar Winds 1 AEOLUS STATUS Part 1: Design Overview.
Quantum Noise Measurements at the ANU Sheon Chua, Michael Stefszky, Conor Mow-Lowry, Sheila Dwyer, Ben Buchler, Ping Koy Lam, Daniel Shaddock, and David.
Status of the advanced LIGO laser O. Puncken, L. Winkelmann, C. Veltkamp, B. Schulz, S. Wagner, P. Weßels, M. Frede, D. Kracht.
Progress On Laser Transmitters For Direct Detection Wind Lidars Floyd Hovis, Fibertek, Inc. Jinxue Wang, Raytheon Space and Airborne Systems Michael Dehring,
CTF3 photo injector laser status CERN 17 July 2009 CLIC meeting.
Mikael Siltanen,1 Markus Metsälä,1
Micro-Pulse Lidar (MPL)
Efficient scaling of output pulse energy in static hollow fiber compressors X. Chen, A. Malvache, A. Ricci, A. Jullien, R. Lopez-Martens ICUIL 2010, Watkins.
Isao MATSUSHIMA, Hidehiko YASHIRO, Toshihisa TOMIE National Institute of Advanced Industrial Science and Technology (AIST) C , Umezono, Tsukuba,
Compton based Polarized Positrons Source for ILC V. Yakimenko Brookhaven National Laboratory September 12, 2006 RuPAC 2006, Novosibirsk.
Progress towards laser cooling strontium atoms on the intercombination transition Danielle Boddy Durham University – Atomic & Molecular Physics group.
Institute of Atomic and Molecular Sciences, Academia Sinica, Taiwan National Taiwan University, Taiwan National Central University, Taiwan National Chung.
Ultra-stable flashlamp-pumped laser A.Brachmann, J.Clendenin, T.Galetto, T.Maruyama, J.Sodja, J.Turner, M.Woods.
Performance Testing of a Risk Reduction Space Winds Lidar Laser Transmitter Floyd Hovis, Fibertek, Inc. Jinxue Wang, Raytheon Space and Airborne Systems.
Optimized temperature/bandwidth operation of cryogenic Yb:YAG composite thin-disk laser amplifier 1 Ultrafast Optics and X-Ray Division, Center for Free-Electron.
Development of High-efficiency Yb:YAG Regenerative Amplifier for Industry Isao Matsushima 1, Kazuyuki Akagawa² 1. National Institute of Advanced Industrial.
Abstract The Hannover Thermal Noise Experiment V. Leonhardt, L. Ribichini, H. Lück and K. Danzmann Max-Planck- Institut für Gravitationsphysik We measure.
A Thermospheric Lidar for He 1083 nm, Density and Doppler Measurements
Advancement in photo-injector laser: Second Amplifier & Harmonic Generation M. Petrarca CERN M. Martyanov, G. Luchinin, V. Lozhkarev Institute of Applied.
V. Sonnenschein, I. D. Moore, M. Reponen, S. Rothe, K.Wendt.
©LZH ZA GEO 600 Laser System as in the optics lab of Callinstraße 38 at LIGO-G D.
Yb:YAG Regenerative Amplifier for A1 Ground Laser Hut Rui Zhang ACCL Division V, RF-Gun Group Nov 20, 2015 SuperKEKB Injector Laser RF Gun Review.
Yb:YAG thin disk multi-pass amplifier
Laser System Upgrade Overview
A new method for first-principles calibration
Workshop for advanced THz and Compton X-ray generation
Champaign, June 2015 Samir Kassi, Johannes Burkart Laboratoire Interdisciplinaire de Physique, Université Grenoble 1, UMR CNRS 5588, Grenoble F-38041,
Ultra-stable, high-power laser systems Patrick Kwee on behalf of AEI Hannover and LZH Advanced detectors session, 26. March 2011 Albert-Einstein-Institut.
Nd:YAG Solid Laser Xiangyu Zhou 20. Nov Yb fiber laser system on the ground Menlo 1030nm oscillator Grating stretcher (Transmission) SOA pulse.
Picking the laser ion and matrix for lasing
Optical Cavity construction at LAL  2000 : polarimeter at HERA 2-mirror cavity cw ND:YAG laser, F=30000 (  ~ )  2005 : Ti:sapph pulsed laser.
DECam Spectrophotometric Calibration DECam calibration workshop, TAMU April 20 th, 2009 Jean-Philippe Rheault, Texas A&M University.
§8.4 SHG Inside the Laser Resonator
L. Corner and T. Hird John Adams Institute for Accelerator Science, Oxford University, UK 1AAC, USA, 2016 The efficient generation of radially polarised.
Date of download: 9/18/2016 Copyright © 2016 SPIE. All rights reserved. Schematic of the OPCPA laser system at Sandia National Laboratories. A stretched.
Yb:YAG Regenerative Amplifier for A1 Ground Laser Hut Rui Zhang ACCL Division V, RF-Gun Group Nov 20, 2015 SuperKEKB Injector Laser RF Gun Review.
Xinzhao Chu, Jeffrey Thayer, Jonathan Friedman
Four wave mixing in submicron waveguides
Current Situation of Yb:YAG Laser at A1 Ground Laser Hut
ILC/ATF-2 Laser System Sudhir Dixit (JAI, Oxford)
Single and dual wavelength Er:Yb double clad fiber lasers
Solar Laser Emission of Light Amplification by Stimulated Radiation
High power high energy ultrafast fiber amplifiers
Lasers for the polarimeter
Laserwire: high resolution non-invasive beam profiling
Nd:YAG Solid Laser 3-2 / A-1 on the ground
All-Optical Injection
Principle of Mode Locking
High-average-power, conductively cooled
Development of Optical Resonant Cavities for laser-Compton Scattering
R&D of Freedback-Free Optical Resonant Cavity
Kansas Light Source Laser System J. R. Macdonald Laboratory
Department of photonics, National Cheng Kung University
Presentation transcript:

Injection seeded ns-pulsed Nd:YAG laser at 1116 nm for Fe-Lidar > Lecture > Author • Document > Date Injection seeded ns-pulsed Nd:YAG laser at 1116 nm for Fe-Lidar Alexander Fischer1, Peter Mahnke1, Daniel Sauder1, Matthias Damm1, Hans Christian Büdenbender2 , Jochen Speiser1 1DLR Stuttgart Institute for Technical Physics 2DLR Oberpfaffenhofen Institute for Atmospherical Physics

Motivation Alima: Airborne Lidar for studying the middle atmosphere > Lecture > Author • Document > Date Motivation Alima: Airborne Lidar for studying the middle atmosphere Cooperation with DLR Oberpfaffenhofen PA-LID Iron in the upper atmosphere (50-100 km) Fluorescence line of 372 nm suitable for resonance Lidar Analysis of the line gives information about air velocity, temperature, gravity waves Goal: compact, airborne system Gelbwachs J., Appl. Opt. 33, 7151 (1994) Gardner et al, Geophys. Res. Lett. 27, 1199 (2001) Chu et al, Appl. Opt. 41, 4400 (2002) Kaifler et al. ;New Lidar Systems at the German Aerospace Center, LPMR 2015

Generation of 372 nm: existing system > Lecture > Author • Document > Date Generation of 372 nm: existing system 100 mJ ~60 ns 34 Hz 3 W 744 nm 2w 372 nm Alexandrite laser single frequency Chu et al., Appl. Opt. 21, 4400 (2002) developed by the NCAR Disadvantage: small emission cross section, needs heating strong pumping source needed

Generation of 372 nm: OPO 532 nm 1116 nm 558 nm 1064 nm 2w 2w 3w > Lecture > Author • Document > Date Generation of 372 nm: OPO 532 nm 1116 nm 558 nm 1064 nm 2w 2w 3w 372 nm OPO >50 mJ single frequency Nd:YAG 1 J, 100 Hz, 10 ns commercially available disadvantages: not very efficient danger of damage of optics due to high pulse energies

Generation of 372 nm: resonator at 1116 nm > Lecture > Author • Document > Date Generation of 372 nm: resonator at 1116 nm 1116 nm 2w 3w single frequency >15 mJ, 100 Hz, <100 ns amplifier system >150 mJ 372 nm, >50 mJ can be realized very compact avoids very high pulse energies small cooling system required

Nd:YAG laser line at 1116 nm emission cross sections: > Lecture > Author • Document > Date Nd:YAG laser line at 1116 nm emission cross sections: challenges with 1116 nm: ~7 times lower amplification than with 1064 nm supression of 1064 nm s1064 = 2,8*10-19 cm² s1116 = 0,42*10-19 cm² Alexandrite s744 = 0,07*10-19 cm² (295 K) and 0,30*10-19 cm² (463 K) Marling, IEEE J. Quant. Electron, 14, 56 (1978) Wang et al.; Appl. Phys B (2011) 104:45–52 Huan et al.; Chin. Phys. B Vol. 21, No. 10 (2012) 104208 Zhang et al.; CHIN. PHYS. LETT. Vol. 30, No. 10 (2013) 104202

Realisation of the resonator > Lecture > Author • Document > Date Realisation of the resonator to experiment/ frequency conversion etalon l/4 plate l/4 plate TFP end mirror Pockels cell end mirror pump chamber with Nd:YAG crystal seed laser diode laser @ 1116 nm cw, 5 mW, single frequency side pumped setup injection seeded resonator length ~110 cm pump duration 300 µs @ 100 Hz

Injection Seeding etalon l/4 plate l/4 plate TFP end mirror > Lecture > Author • Document > Date Injection Seeding etalon l/4 plate l/4 plate TFP end mirror Pockels cell end mirror pump chamber with Nd:YAG crystal seed laser no stabilization (bad parameters) (2 modes) Need for stabilization of the resonator length to get proper seeding single frequency

Feedback-looped Stabilzation > Lecture > Author • Document > Date Feedback-looped Stabilzation end mirror with piezo l/4 plate l/4 plate photodiode TFP pump chamber with Nd:YAG crystal seed laser Build-up-time feedback control Folie mit vorher kombinieren

Output power and beam quality > Lecture > Author • Document > Date Output power and beam quality M² ~ 1,1 maximum pulse energy ~14.3 mJ @ 1116 nm 4.9 mJ @ 372 nm (max. efficiency 35%) output coupling ~10% pulse length 80 ns

Further Work implementation of a end pumped resonator > Lecture > Author • Document > Date Further Work implementation of a end pumped resonator