Magnetic field induced charge-density-wave transitions: the role of orbital and Pauli effects Mark Kartsovnik Walther-Meißner-Institut, BADW, Garching,

Slides:



Advertisements
Similar presentations
A new class of high temperature superconductors: “Iron pnictides” Belén Valenzuela Instituto de Ciencias Materiales de Madrid (ICMM-CSIC) In collaboration.
Advertisements

Observation of a possible Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state in CeCoIn 5 Roman Movshovich Andrea Bianchi Los Alamos National Laboratory, MST-10.
Kitaoka lab. Takayoshi SHIOTA M1 colloquium N. Fujiwara et al., Phys. Rev. Lett. 111, (2013) K. Suzuki et al., Phys. Rev. Lett. 113, (2014)
Microscopic structure and properties of superconductivity on the density wave background P. D. Grigoriev L. D. Landau Institute for Theoretical Physics,
Magnetic field effects on the CDW and SC states in  -(BEDT-TTF) 2 KHg(SCN) 4 Dieter Andres, Sebastian Jakob, Werner Biberacher, Karl Neumaier and Mark.
Quantum Chemistry Revisited Powerpoint Templates.
TRIONS in QWs Trions at low electron density limit 1. Charged exciton-electron complexes (trions) 2. Singlet and triplet trion states 3. Modulation doped.
Spin-orbit effects in semiconductor quantum dots Departament de Física, Universitat de les Illes Balears Institut Mediterrani d’Estudis Avançats IMEDEA.
Interlayer tunneling spectroscopy of NbSe 3 and graphite at high magnetic fields Yu.I. Latyshev Institute of Raduio-Engineering and Electronics RAS, Mokhovaya.
Domain walls at the SDW endpoint of (TMTSF) 2 PF 6 under pressure C.Pasquier, Laboratoire de Physique des Solides, Orsay S. Brazovskii LPTMS, Orsay Acknowledgments:
Magnetic field effects on the CDW and SC states in  -(BEDT-TTF) 2 KHg(SCN) 4 Dieter Andres, Sebastian Jakob, Werner Biberacher, Karl Neumaier and Mark.
1 Sonia Haddad LPMC, Département de Physique, Faculté des Sciences de Tunis, Tunisia Collaboration N. Belmechri, (LPS, Orsay, France) M. Héritier, (LPS,
Pavel D. Grigoriev L. D. Landau Institute for Theoretical Physics, Russia Consider very anisotropic metal, such that the interlayer tunneling time of electrons.
Quasiparticle anomalies near ferromagnetic instability A. A. Katanin A. P. Kampf V. Yu. Irkhin Stuttgart-Augsburg-Ekaterinburg 2004.
Hidden Reentrant and Larkin-Ovchinnikov- Fulde-Ferrell Phase in a Magnetic Filed in (TMTSF) 2 ClO 4 ECRYS (August 17 th 2011) Andrei G. Lebed Department.
Normal and superconducting states of  -(ET) 2 X organic superconductors S. Charfi-Kaddour Collaborators : D. Meddeb, S. Haddad, I. Sfar and R. Bennaceur.
Brookhaven Science Associates U.S. Department of Energy Neutrino Factory / Muon Collider Collaboration Meeting March 17-19, 2008, FNAL, Batavia, IL Target.
Nematic Electron States in Orbital Band Systems Congjun Wu, UCSD Collaborator: Wei-cheng Lee, UCSD Feb, 2009, KITP, poster Reference: W. C. Lee and C.
Some Igor Schegolev and Chernokolovka Recollections: Igor visited Gor’kov at the NHMFL in the early 90’s: Learned about “Igor” software.  -(BEDT-TTF)
Microscopic nematicity in iron superconductors Belén Valenzuela Instituto de Ciencias Materiales de Madrid (ICMM-CSIC) In collaboration with: Laura Fanfarillo.
Crystal structure, T-P phase diagram and magnetotransport properties of new organic metal Crystal structure, T-P phase diagram and magnetotransport properties.
Fermi-Edge Singularitäten im resonanten Transport durch II-VI Quantenpunkte Universität Würzburg Am Hubland, D Michael Rüth, Anatoliy Slobodskyy,
Coexistence and Competition of Superconductivity and Magnetism in Ho 1-x Dy x Ni 2 B 2 C Hyeon-Jin Doh, Jae-Hyuk Choi, Heon-Jung Kim, Eun Mi Choi, H. B.
Transport in three-dimensional magnetic field: examples from JT-60U and LHD Katsumi Ida and LHD experiment group and JT-60 group 14th IEA-RFP Workshop.
Non-Fermi Liquid Behavior in Weak Itinerant Ferromagnet MnSi Nirmal Ghimire April 20, 2010 In Class Presentation Solid State Physics II Instructor: Elbio.
Raman Scattering As a Probe of Unconventional Electron Dynamics in the Cuprates Raman Scattering As a Probe of Unconventional Electron Dynamics in the.
Mott phases, phase transitions, and the role of zero-energy states in graphene Igor Herbut (Simon Fraser University) Collaborators: Bitan Roy (SFU) Vladimir.
Quantum Theory and the Electronic Structure of Atoms General Chemistry I CHM 111 Dr Erdal OnurhanSlide 1 Wave Properties A wave is defined as a continuously.
Quasi-1D antiferromagnets in a magnetic field a DMRG study Institute of Theoretical Physics University of Lausanne Switzerland G. Fath.
Atomic Structure The theories of atomic and molecular structure depend on quantum mechanics to describe atoms and molecules in mathematical terms.
Theory of induced superconductivity in graphene
Emergent Nematic State in Iron-based Superconductors
FLEX Study of  ’-(ET) 2 AuCl 2 Hiori Kino ( National institute for materias science ) Hiroshi Kontani ( Nagoya Univ. ) Tsuyoshi Miyazaki ( National institute.
Electron-nuclear spin dynamics in optically pumped semiconductor quantum dots K.V.Kavokin A.F.Ioffe Physico-Technical Institute, St.Petersburg, Russia.
Superconductivity with T c up to 4.5 K 3d 6 3d 5 Crystal field splitting Low-spin state:
1 Department of Physics , University at Buffalo, SUNY APS March Meeting 2015 Phonon mediated spin relaxation in a moving quantum dot: Doppler shift, Cherenkov.
Unusual magnetotransport properties of NbSe 3 single crystals at low temperature A.A.Sinchenko MEPhI, Moscow, Russia Yu.I.Latyshev, A.P.Orlov IRE RAS,
Quantum Mechanical Model. Quantum Numbers (n, l, m l, m s ) n = ____________ Quantum Number It has whole number values (1, 2, 3, …) An n increases, the.
Berry Phase and Anomalous Hall Effect Qian Niu University of Texas at Austin Supported by DOE-NSET NSF-Focused Research Group NSF-PHY Welch Foundation.
Energy Gaps Insulators & Superconductors When does an energy or band gap lead to insulating behavior? Band gap insulators, Peierls’ insulators When does.
1 Vortex configuration of bosons in an optical lattice Boulder Summer School, July, 2004 Congjun Wu Kavli Institute for Theoretical Physics, UCSB Ref:
NTNU, April 2013 with collaborators: Salman A. Silotri (NCTU), Chung-Hou Chung (NCTU, NCTS) Sung Po Chao Helical edge states transport through a quantum.
The Hall States and Geometric Phase
From the Hubbard model to high temperature superconductivity HARVARD S. Sachdev Talk online: sachdev.physics.harvard.edu.
Phase Diagram of Ruthenate: Ca2-xSrxRuO4 (CSRO) (0. 0<x<2
Quantum Theory and the Electronic Structure of Atoms
Fractional Berry phase effect and composite particle hole liquid in partial filled LL Yizhi You KITS, 2017.
7. Quantum-Mechanical View of Atoms
Qian Niu 牛谦 University of Texas at Austin 北京大学
6/25/2018 Nematic Order on the Surface of three-dimensional Topological Insulator[1] Hennadii Yerzhakov1 Rex Lundgren2, Joseph Maciejko1,3 1 University.
Chapter 41 Atomic Structure
Quantum Numbers AP Chemistry: Chapter 7.
Quantum Theory.
Pauli Paramagnetism.
EXAM #3 HAS BEEN MOVED TO MONDAY, NOVEMBER 9TH
The Quantum (Wave) Mechanics Model
The Free Electron Fermi Gas
UC Davis conference on electronic structure, June. 2009
Chapter 41 Atomic Structure
Quantum Numbers Section 3.5.
Chapter – 1 Atomic Spectroscopy
Quantum Theory.
Bohr Model of Hydrogen Visible Spectrum Full Spectrum.
7. Quantum-Mechanical View of Atoms
Application of BCS-like Ideas to Superfluid 3-He
FSU Physics Department
Quantum Theory.
A possible approach to the CEP location
Pseudopsin description of the coherent charge fluctuation spectroscopy experiment. Pseudopsin description of the coherent charge fluctuation spectroscopy.
Real-space imaging of a nematic quantum liquid
Presentation transcript:

Magnetic field induced charge-density-wave transitions: the role of orbital and Pauli effects Mark Kartsovnik Walther-Meißner-Institut, BADW, Garching, Germany

Outline

a-(BEDT-TTF)2KHg(SCN)4: basic features r||(300 K)  30 – 100 Wcm; r^/r|| ~ 104 - 105; r||(300 K)/ r||(1.4 K)  102 T. Mori et al., 1990 2D Fermi surface Nesting instability of the Fermi surface CDW formation at  8 K very low!! Q

Pauli effect (isotropic) Spin splitting deteriorates the nesting conditions for a CDW TCDW/TCDW(0), exp Phase diagram of a-(BEDT-TTF)2KHg(SCN)4 P. Christ et al., JETP Lett. 2000 ~ 23 T Q+ Q- TCDW/TCDW(0) Theory: D. Zanchi et al., PRB 1996; P. Grigoriev&D.Lyubshin , PRB 2005 B suppresses CDW Q- < Q+

Orbital effect (B || z) Dy ~ 1/Bz Real space orbit: electrons become effectively more 1D Real space orbit:

Orbital effect (B || z) FICDW at t^’ > t^’ * Theory a-(BEDT-TTF)2KHg(SCN)4 D. Andres et al., PRB 2001 Theory FICDW at t^’ > t^’ * due to Landau quantization of the unnested FS pocket D. Zanchi et al., PRB 1996

FICDW: experiment; B || z SdHo The “slow oscillations” approximately periodic with 1/B appear at P  Pc  2.5 kbar display a weak hysteresis P = 3 kbar

FICDW: experiment; B || z The “slow oscillations” approximately periodic with 1/B appear at P  Pc  2.5 kbar display weak hysteresis slightly shift with temperature  behaviour consistent with the FICDW scenario!!

FICDW: experiment; B || z

FICDW: experiment; B || z in a-(BEDT-TTF)2KHg(SCN)4 FISDW in (TMTSF)2PF6 A. Kornilov et al., PRB 2002 FICDW is weaker than FISDW due to the Pauli effect! A. Lebed, JETP Lett. 2003

FICDW: role of the Pauli effect N = 5 4 3 2 1 4 N = 3 2 1 no Pauli effect (FISDW) Pauli effect on (FICDW) Qx = 2kF + NG Qx = 2kF  QP + NG G = 2eayBz/h QP = 2mBB/hvF

FICDW: role of the Pauli effect 4 N = 3 2 1 A. Lebed, JETP Lett. 2003 no Pauli effect (FISDW) Pauli effect on (FICDW) Qx = 2kF + NG Qx = 2kF  QP + NG G = 2eayBz/h QP = 2mBB/hvF

FICDW in a tilted field Commensurate splitting “Spin-zero” 2QP = MG (A. Bjelis et al., 1999; A. Lebed, 2003) “Spin-zero” N = 3,4 2,3 1,2 0,1 2QP = MG 2QP = (M + 1/2)G with M - integer A. Lebed, JETP Lett. 2003

FICDW in a tilted field: experiment T = 0.4 K Spin-zero condition:

FICDW in a tilted field: experiment 1st CS angle Spin-zero condition:

FICDW in a tilted field: experiment 1st CS angle Spin-zero condition:  vF  1.2105 m/s

Summary The orbital effect causes FICDW transitions in a-(BEDT-TTF)2KHg(SCN)4 at pressures above Pc = 2.5 kbar The Pauli effect, in general, weakens the FICDW instability The interplay between the orbital and Pauli effects can be controlled by changing the field orientation: - the FICDW is enhanced at commensurate splitting angles - the FICDW is suppressed at „spin-zero“ angles