EET103 TEKNOLOGI ELEKTRIK

Slides:



Advertisements
Similar presentations
Chapter 2 Basic Electricity. Objectives Upon completion of this course, you will be able to: –Briefly explain the atomic theory and is relationship to.
Advertisements

Objectives Define basic components of electricity Define basic components of electricity Recognize the 3 electrical classifications of materials Recognize.
ENGR 111 Lecture 3 Reading: Chapters 19, Class notes.
University of Pennsylvania Basic Electronics Things to be covered: What is electricity Voltage, Current, Resistance Ohm’s Law Capacitors, Inductors Semiconductors.
Integrated Science I. Electrical conductors – a material that allows electrons to flow easily through it Ex) gold, silver, copper, etc. Electrical insulators.
CLASS :- X MADE BY :- MANAS MAHAJAN
Lesson 2 Basic Laws of Electric Cicuits Ohms Law Kirchhoff’s Current Law.
ETEC 4824 Analogue Electronics Resistors and Ohms Law.
EMF. E.m.f and p.d - Learning Outcomes You should all be able to: define potential difference (p.d.); select and use the equation W = VQ; define the volt;
1 Introduction to Electricity 2 3 Lighting an Electric Bulb Light Bulb Switch Battery Electron Flow + -
Electronic Concepts Hussam Al-Hertani Principles of Electricity.
Electric Charge One of the seven fundamental SI units.
Chapter 1: Introduction and DC Circuit AZRALMUKMIN BIN AZMI.
Carlito Espinosa III- Galileo
EET101 LITAR ELEKTRIK 1 ELECTRIC CIRCUIT 1 SEM Lecturer : Wan Nur Suryani Firuz Bt Wan Ariffin Office: KKF 8C
Electricity and Magnetism 1Static electricity 2Electric Circuits and Electric Current 3 Ohm’s Law and Resistance 4 Series and Parallel Circuits 5Electric.
Electric Charge Electric charge is the physical property of matter that causes it to experience a force when placed in an electromagnetic field. There.
1 CHAPTER 1 EKT 101 [Electric Circuit I]: V2010/11 School of Computer and Communication Engineering, UniMAP Prepared By: Prepared By: Shahadah binti Ahmad.
CLASS :- X MADE BY :- MANAS MAHAJAN SCHOOL :- K.V. GANESHKHIND PUNE-7
Unit G482: Electrons, Waves and Photons
ELECTRIC CIRCUITS BASICS. Electricity Basics Electricity starts with electrons. Every atom contains one or more electrons. Electrons have a negative charge.
Electricity Basics of electricity. Electricity Atoms – The smallest unit of each element Electrons – negatively charged particles in atoms Ions – charged.
1 AGBell – EECT by Andrew G. Bell (260) Lecture 1.
Kashif Bashir1 Electricity Kashif Bashir Web:
RL and RC circuits first- order response Electric circuits ENT 161/4.
McGraw-Hill © 2013 The McGraw-Hill Companies Inc. All rights reserved. Electricity Principles & Applications Eighth Edition Richard J. Fowler Chapter.
Objectives Define basic components of electricity Recognize the 3 electrical classifications of materials Compare and contrast AC vs. DC Explain the concept.
SPH3U: Electricity Kirchhoff's Laws & Resistors. Circuits Review  Label the following as a Parallel Circuit or a Series Circuit. Label all the parts.
ELECTRICITY Chapter-16. DEFINITIONS COULOMB It is SI unit of electric charge. One coulomb (1C) of charge being that quantity of charge which when placed.
CHAPTER 1 – DET Introduction to electric circuit
CHAPTER 1 - Introduction to electric circuit
Chapter 1: Introduction and DC Circuit AZRALMUKMIN BIN AZMI.
8.3 – RESISTANCE AND OHMS LAW. SECTION 8.3 – RESISTANCE AND OHM’S LAW Resistance – is the property of any material that slows down the flow of electrons.
Unit 2 | Using tools, equipment and other devices
Basic DC Circuits Review
CHAPTER 1 Variables & Circuit Elements
Current Electricity © JOHN PARKINSON.
Basic Laws of Electric Cicuits
EKT101 Electric Circuit Theory
EET101 LITAR ELEKTRIK 1 Lecture 1.
Introduction to Electricity
Bacis Electrical Circuit 1
Electric & Magnetic Energy
Principles & Applications
ELECTRICITY.
Fundamentals of Electricity
JC Technology Electric Circuits.
5.1 : ELECTRICAL DISTRIBUTION
Introduction to Electricity
Electronics Fundamentals
Resistance.
Introduction COURSE OBJECTIVE:
ELECTRICITY.
Higher Physics Electricity.
Basic Electricity and Electronics
Introducing Current and Direct Current Circuits
DIRECT CURRENT CIRCUITS
Basic Laws of Electric Circuits
Agenda Administrative Stuff Syllabus MPC Online Short Lecture
Electrical Theory.
Chapter 2.
17 Chapter Electrical Principles. 17 Chapter Electrical Principles.
Basic electrical engineering
Electricity.
Circuit Components.
Chapter 1 Basic Circuit Theory (II)
Basic Laws of Electric Cicuits Kirchhoff’s Current Law
Voltage, Current, and Resistance
BLM Circuit Theory Prof. Dr. Nizamettin AYDIN
Presentation transcript:

EET103 TEKNOLOGI ELEKTRIK PN SAMILA MAT ZALI PN HAZIAH ABDUL HAMID

COURSE STRUCTURE Final Exam : 50% Test : 10% Practical: - Laboratory : 30% - Lab Test : 10% TOTAL :100%

COURSE SYLLIBUS Konsep asas elektrik Konsep asas sistem elektrik, struktur atom, kuantiti dan unit elektrik: cas elektrik, arus, voltan, rintangan, tenaga dan kuasa, penebat, konduktor dan semikonduktor, elemen aktif dan pasif, hukum Ohm dan Kirchhoff, kaedah analisis litar: Thevenin dan Norton, Kemagnetan dan keelektromagnetan Kemagnetan: magnet, medan magnet dan fluks, domain magnet, magnet kekal, magnet sementara. Keelektromagetan: medan magnet dan arus elektrik, daya gerak magnet dan ketumpatan, keengganan litar magnet, histerisis, daya elektromagnet, kilas dalam gegelung. Aruhan elektromagnet: voltan aruhan dalam gegelung, hukum lenz dan aturan tangan kanan flemming, dan arus pusar. Sistem satu fasa dan dua fasa Pengenalan dan ciri-ciri sistem satu fasa, Kebaikan dan keburukan sistem satu fasa, Pengiraan voltan, kuasa, dan arus. Analisis dalam perunit dan sebenar.

Sistem tiga fasa Pengenalan dan ciri-ciri sistem tiga fasa, Kebaikan dan keburukan sistem tiga fasa, Lilitan tiga fasa sambungan delta, Lilitan tiga fasa sambungan bintang, Voltan dan arus dalam sistem sambungan bintang, Voltan dan arus dalam sistem sambungan delta, Kuasa dalam sistem tiga fasa dengan beban seimbang, Pengukuran kuasa aktif didalam sistem tiga fasa tiga wayar, Pengukuran faktor kuasa menggunakan dua wattmeter. Pengubah Pengubah: prinsip asas pengubah, struktur asas, nisbah pengubah, terminalogi belitan utama dan sekunder, kehilangan-kehilangan dlm pengubah, kadaran pengubah, dan binaan pengubah. Litar setara serta analisis dan pengiraan ringkas melibatkan pengubah. Mesin AT dan AU Penjana dan motor AT, prinsip operasi, kawalan, dan penggunaan Tork; Alternator, motor aruhan, motor satu fasa, prinsip operasi, dan jenis-jenis kawalan mesin AU.

KONSEP ASAS ELEKTRIK Konsep asas sistem elektrik Struktur atom, kuantiti dan unit elektrik: cas elektrik, arus, voltan, rintangan, tenaga dan kuasa Penebat, konduktor dan semikonduktor Elemen aktif dan pasif Hukum Ohm dan Kirchhoff Kaedah analisis litar: Thevenin dan Norton

KONSEP ASAS ELEKTRIK Konsep asas sistem elektrik Struktur atom, kuantiti dan unit elektrik: cas elektrik, arus, voltan, rintangan, tenaga dan kuasa Penebat, konduktor dan semikonduktor Elemen aktif dan pasif Hukum Ohm dan Kirchhoff Kaedah analisis litar: Thevenin dan Norton

KONSEP ASAS SISTEM ELEKTRIK

KONSEP ASAS ELEKTRIK Konsep asas sistem elektrik Struktur atom, kuantiti dan unit elektrik: cas elektrik, arus, voltan, rintangan, tenaga dan kuasa Penebat, konduktor dan semikonduktor Elemen aktif dan pasif Hukum Ohm dan Kirchhoff Kaedah analisis litar: Thevenin dan Norton

ATOM STRUCTURE Atoms: basic building blocks of nature Molecule: smallest particle of a substance and has all of its characteristics Elements: matter composed of single type of atoms Compounds: different types of atoms combine chemically

Particles of atom Protons (+ charge) + +

Protons (+ charge) + + Neutrons (no charge)

Protons (+ charge) - + + Neutrons (no charge) - Electrons (- charge)

The electrons’ orbital paths are shown by the dashed lines. The electrons orbit around the nucleus (neutron/proton cluster). Protons (+ charge) - + + Neutrons (no charge) - Electrons (- charge) The electrons’ orbital paths are shown by the dashed lines.

= Neutron + = Proton - = Electron The two electrons are in the same shell even though they have different orbital paths. - + + - HELIUM ATOM

KUANTITI DAN UNIT ELEKTRIK Unit SI SI : International System of Unit yang diperkenalkan oleh National Bureau of Standards dalam tahun 1964 Kuantiti Unit asas Simbol Panjang Meter m Jisim Kilogram kg Masa Saat s Arus elektrik Ampere A Termodinamik Kelvin k Luminous intensity candela cd

Unit SI merangkumi sistem desimal untuk dihubungkan dengan unit yang lebih besar atau lebih kecil dengan unit asas dan menggunakan prefix piawaian untuk kuasa 10 iaitu: Pekali Prefix Simbol 1012 Tera T 109 Giga G 106 Mega M 103 Kilo k 100 10-3 Mili m 10-6 Micro µ 10-9 Nano n 10-12 Pico p 10-15 Femto f 10-18 Atto a

Unit Elektrik • Charge »»» Coulomb • Current »»» Ampere • Voltage »»» Volt • Resistance »»» Ohm • Power »»» Watt

CAS ELEKTRIK Polarity: type of charge (-ve or +ve) Electron: -ve charge Proton: +ve charge Electric charge create electric field of force

Force Between Electric Charges _ charge charge _ charge _ _ charge _ charge Like charges produce a repelling force. When physically released, they repel each other.

Electric charge is a property possessed by both electrons and protons. Quantity is CHARGE (Q) Base Unit is COULOMB (C) Examples of correct usage: Charge = 15 Coulombs Q = 15 C

Current is the movement of charge in a specified direction. ARUS Current is the movement of charge in a specified direction.

Electric Current Terminology An ampere equals a coulomb per second. Quantity is CURRENT (I) Base Unit is AMPERE (A) An ampere equals a coulomb per second. Examples of correct usage: Current = 12 Amperes I = 12 A

Electric Current Relationships Charge Q Current = I = t Time Examples: Q 14 C = 1.4 A I = = t 10 s Q 14 C = 10 s t = = I 1.4 A

Types of current: Alternating current Direct current (arus terus) (arus ulangalik) Direct current (arus terus) Damped alternating current (arus ulangalik teredam) Exponential current

Definition of Voltage VOLTAN Voltage is the electric pressure or force that causes current. It is a potential energy difference between two points. It is also known as an electromotive force (emf).

A volt equals a joule per coulomb. Voltage Terminology Quantity is VOLTAGE (V) Base Unit is VOLT (V) A volt equals a joule per coulomb. Examples of correct usage: Voltage = 32 Volts V = 32 V

Voltage Relationships Energy W Voltage = V = Q Charge Examples: W 56 J = 28 V V = = Q 2 C W 84 J = 4 C Q = = V 21 V

Definition of Resistance RINTANGAN Definition of Resistance Resistance is the opposition a material offers to current. Resistance is determined by: Type of material (resistivity) Temperature of material Cross-sectional area Length of material

Some Factors That Determine Resistance For a specific material and temperature, this block has given amount of resistance. Doubling the length of the block, doubles the resistance. Doubling the cross-sectional area, halves the resistance.

Resistance Terminology An ohm equals a volt per ampere. Quantity is RESISTANCE (R) Base Unit is OHM (W) An ohm equals a volt per ampere. Examples of correct usage: Resistance = 47 ohms R = 47 W

Resistance Relationships Resistivity x length KL Resistance = R = A area Example: KL 1.4 x10-6 W· cm x 2 x104 cm R = = A 0.28 cm2 = 0.1 W

TENAGA Work (W) Energy (W) The joule (J) The amount of work done equals the amount of energy used (converted). consists of a force moving through a distance. Energy (W) is the capacity to do work. Fifty joules of energy are required to do fifty joules of work. The joule (J) is the base unit for both energy and work.

Energy Conversion A cell converts chemical energy to electric energy. A light bulb converts electric energy to light energy and heat energy.

Power is the rate of using energy or doing work. KUASA Definition of Power Power is the rate of using energy or doing work. “Using energy” means that energy is being converted to a different form.

A watt equals a joule per second. Power Terminology Quantity is POWER (P) Base Unit is WATT (W) A watt equals a joule per second. Examples of correct usage: Power = 120 Watts P = 120 W

Power Relationships Energy W Power = P = t Time Examples: W 158 J W = Pt = 75 W x 25 s = 1875 J

KONSEP ASAS ELEKTRIK Konsep asas sistem elektrik Struktur atom, kuantiti dan unit elektrik: cas elektrik, arus, voltan, rintangan, tenaga dan kuasa Penebat, konduktor dan semikonduktor Elemen aktif dan pasif Hukum Ohm dan Kirchhoff Kaedah analisis litar: Thevenin dan Norton

PENEBAT, KONDUKTOR DAN SEMIKONDUKTOR Penebat (insulator) Materials that have high resistance to current Examples: paper, wood, plastic, rubber, glass and mica

Konduktor (conductor) Materials that have very little resistance to current Examples: copper, aluminum, silver and iron Superconductivity: material has no resistance

Semikonduktor (semiconductor) Materials which are between extreme of conductor and insulator Examples: silicon and germanium Allow some current to flow, yet have a considerable amount of resistance

KONSEP ASAS ELEKTRIK Konsep asas sistem elektrik Struktur atom, kuantiti dan unit elektrik: cas elektrik, arus, voltan, rintangan, tenaga dan kuasa Penebat, konduktor dan semikonduktor Elemen aktif dan pasif Hukum Ohm dan Kirchhoff Kaedah analisis litar: Thevenin dan Norton

ELEMEN AKTIF DAN PASIF Circuit Elements Active elements Berkemampuan membekalkan kuasa kepada litar Contoh : punca voltan dan arus Passive elements Hanya mampu menerima kuasa Contoh : perintang, induktor, kapasitor, diod dan lain-lain

Independent source Arus Voltan

Dependent source Arus Voltan

Symbol of circuit elements Resistor (perintang) R UNIT: Ohm (Ω)

Resistor colour code

Resistor Colour Codes Yellow 4 7 Violet 00 Red ±10 % Silver

Resistor Colour Codes 56 x 103 ± 5 % = 56000 ± 5 % = 56 kW ± 5 % Green = 5 Blue = 6 Orange = 3 Gold = ± 5 % 56 x 103 ± 5 % = 56000 ± 5 % = 56 kW ± 5 %

Resistor Colour Codes = 464 kW ± 2% 4 6 4 0 0 0 ± 2%

Capasitor (kapasitor) UNIT: Farad (F)

Inductor (Induktor) L UNIT: Henry (H)

KONSEP ASAS ELEKTRIK Konsep asas sistem elektrik Struktur atom, kuantiti dan unit elektrik: cas elektrik, arus, voltan, rintangan, tenaga dan kuasa Penebat, konduktor dan semikonduktor Elemen aktif dan pasif Hukum Ohm dan Kirchhoff Kaedah analisis litar: Thevenin dan Norton

HUKUM OHM Georg Simon Ohm (1787-1854) formulated the relationships among voltage, current, and resistance as follows: The current in a circuit is directly proportional to the applied voltage and inversely proportional to the resistance of the circuit.

An energy or power source This complete circuit uses the following: An energy or power source A control device A load Conductors Insulation (not shown)

Calculating Current V R = 36 V 1800 W I = = 0.02 A = 20 mA SPST S1 B1 1.8 kW B1 36 V V R = 36 V 1800 W I = = 0.02 A = 20 mA

Calculating Resistance B1 24 V A 0.03 A V I = 24 V 0.03 A R = = 800 W = 0.8 k W

Calculating Voltage A V = IR = 0.15 A x 270 W = 40.5 V 0.15 A B1 R

Calculating Power A V IV = P = 0.2 A x 54 V = 10.8 W P = I2R = 0.2 A x 0.2 A x 270 W = 10.8 W P = V2/R = (54 V x 54 V) / 270 W = 10.8 W

HUKUM KIRCHHOFF Gustav Robert Kirchhoff (1824 – 1887) Models relationship between: circuit element currents (KCL) circuit element voltages (KVL) Beliau memperkenalkan dua hukum iaitu: Hukum Arus Kirchhoff (KCL) Hukum Voltan Kirchhoff (KVL)

Kirchhoff’s Current Law (KCL) Current entering node = current exiting (What goes in, must come out) Convention: +i is exiting, -i is entering For any circuit node:

Kirchhoff’s Current Law (KCL) No matter how many paths into and out of a single point all the current leaving that point must equal the current arriving at that point.

Kirchhoff’s Voltage Law (KVL) voltage increases = voltage decreases (What goes up, must come down) Convention: hit minus (-) side first, write negative For any circuit loop:

Kirchhoff’s Voltage Law (KVL) The voltage drops around any closed loop must equal the applied voltages

KONSEP ASAS ELEKTRIK Konsep asas sistem elektrik Struktur atom, kuantiti dan unit elektrik: cas elektrik, arus, voltan, rintangan, tenaga dan kuasa Penebat, konduktor dan semikonduktor Elemen aktif dan pasif Hukum Ohm dan Kirchhoff Kaedah analisis litar: Thevenin dan Norton

KAEDAH ANALISIS LITAR: THEVENIN DAN NORTAN MODEL LITAR LITAR SELARI LITAR SESIRI LITAR SELARI-SESIRI

LITAR SESIRI/SELARI Perintang yang disusun secara sesiri: Rintangan setara Req = R1 + R2 + ……….+ RN

ARUS DALAM LITAR SESIRI Arus dalam litar sesiri adalah sama pada setiap elemen litar VOLTAN DALAM LITAR SESIRI Voltan (VT) dalam litar sesiri adalah jumlah voltan bagi setiap elemen litar

Perintang yang disusun secara selari:

Rintangan setara:

Bagi litar yang mempunyai dua perintang selari:

ARUS DALAM LITAR SELARI Arus dalam litar sesiri adalah jumlah arus bagi setiap elemen litar VOLTAN DALAM LITAR SELARI Voltan (VT) dalam litar sesiri sama bagi setiap elemen litar

VOLTAGE DIVIDER

Menggunakan Hukum Ohm, didapati: voltan pada perintang R2:

CURRENT DIVIDER

Menggunakan Hukum Ohm, (1)

Dari persamaan (1), diperolehi:

SOURCE TRANSFORMATION Penjelmaan punca bermaksud prosidur untuk menjelmakan satu punca kepada bentuk punca yang lain sambil mengekalkan ciri-ciri terminal punca asal.

punca voltan tak bersandar yang sesiri dengan perintang boleh dijelmakan kepada satu punca arus yang selari dengan perintang atau sebaliknya

Penjelmaan punca

Contoh Penjelmaan Punca

LITAR SETARA THEVENIN Teori ini menyatakan bahawa kesemua elemen kecuali perintang beban boleh diwakilkan dengan satu litar setara yang hanya mengandungi satu punca voltan tak bersandar yang sesiri dengan satu perintang setara dan sambutan yang diukur pada perintang beban tidak berubah.

Litar Setara Thevenin

LITAR SETARA NORTON Litar setara ini mengandungi satu punca arus tak bersandar yang selari dengan satu perintang.

Contoh Litar Setara Thevenin dan Norton

Langkah 1: Penjelmaan punca

Langkah 2: Gabungkan punca dan perintang selari

Langkah 3: Penjelmaan punca, gabungkan perintang sesiri dan litar setara Thevenin akan terhasil:

Langkah 4: Penjelmaan punca dan menghasilkan litar setara Norton: